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Abstract  

This study introduces Polar Lights Optimization (PLO), a metaheuristic algorithm inspired by the 

aurora phenomenon or polar lights. The aurora is a unique natural spectacle that occurs when energetic 

particles from the solar wind converge at the Earth's poles, influenced by the geomagnetic field and the 

Earth's atmosphere. By analyzing the motion of  high-energy particles and delving into the underlying 

principles of  physics, we propose a unique model for mimicking particle motion. This model integrates both 

gyration motion and aurora oval walk, with the former facilitating local exploitation while the latter enabling 

global exploration. By synergistically combining these two strategies, PLO achieves a better balance between 

local exploitation and global exploration. Additionally, a particle collision strategy is introduced to enhance 

the efficiency of  escaping local optima. To evaluate the performance of  PLO, a qualitative analysis 

experiment is designed to assess its ability to explore the problem space and search for solutions. PLO is 

compared with nine classic algorithms and eight high-performance algorithms using 30 benchmark functions 

from IEEE CEC2014. Furthermore, we compare and analyze PLO with the current state-of-the-art methods 

in the field, utilizing 12 benchmark functions from IEEE CEC2022. Subsequently, PLO is successfully 

applied to multi-threshold image segmentation and feature selection. Specifically, a PLO-based multi-

threshold segmentation model and a binary PLO-based feature selection method are developed. The 

performance of  PLO is also evaluated using 10 images from the Invasive Ductal Carcinoma (IDC) medical 

dataset, while the overall adaptability and accuracy of  the feature selection model are tested using 8 medical 

datasets. These results affirm the emergence of  PLO as an effective optimization tool ready for solving real-

world problems, including those in the medical field. The source codes of  PLO are available in 
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https://aliasgharheidari.com/PLO.html and other websites. 

Keywords: Metaheuristic algorithms; Polar Lights Optimization; Medical applications; Multi-threshold image 

segmentation; Feature selection 

 

Nomenclature 

PLO Polar Lights Optimization 𝑅, 𝑟1, 𝑟2, 𝑟3, 𝑟4𝑟5 A random number with values 

between [0,1]. 

MAs Metaheuristic algorithms 𝐾 The collision probability 

𝑁 The population size 𝑚 Mass of  the particle 

𝐷 The problem's dimension 𝑣 Velocity vector of  the particle 

𝑋(𝑁, 𝐷) The PLO population 𝑞 Charge of  the particle 

𝑋𝑖,𝑗 The energetic particles 𝐵 Geomagnetic field intensity 

𝑈𝐵, 𝐿𝐵 Upper and lower bounds of  

the solution space 

𝑋𝑎𝑣𝑔 The center-of-mass position of  the 

energetic particle population 

𝑏𝑒𝑠𝑡 The current optimal solution 

computed by the algorithm 

𝑊1, 𝑊2 The weights of  the gyration strategy 

and the auroral ellipse strategy 

𝐴𝑜 Variation of  the auroral oval 

walk 

𝑡, 𝑇 Current and maximum number of  

iterations 

𝛼 Damping factor 𝑋𝑏𝑒𝑠𝑡  The optimal solution searched by 

the meta-heuristic algorithm 

1. Introduction 

In the fields of  science and engineering, addressing optimization problems is crucial for enhancing 

efficiency and optimizing resource utilization [1]. These problems typically involve the task of  finding the 

optimal solution under given conditions and encompass various domains such as logistics, production 

planning, and financial investments. Researchers have proposed deterministic and stochastic methods to 

tackle current challenges. While deterministic methods such as dynamic programming and branch and bound 

can ensure optimal solutions, they require convex feasible domains, continuous differentiable objective 

functions, or additional constraints. Moreover, their computational costs often increase sharply with the 

problem's scale, limiting their applicability to large-scale problems. In contrast, the emergence of  heuristic 

algorithms and metaheuristic algorithms in stochastic methods has provided a more feasible approach for 

solving new problems [2]. 

Heuristic algorithms (HAs) are methods that utilize specific heuristic rules, experience, or intuition to 

generate solutions [3]. They can find solutions within a reasonable time frame and exhibit scalability in dealing 

with complex problems [4]. Therefore, when exhaustive search becomes impractical in certain situations, 

HAs can provide satisfactory approximate solutions [5]. Metaheuristic algorithms (MAs) represent a more 

advanced form of  HAs, possessing solution strategies independent of  the optimization problem and 

constituting a general algorithmic framework applicable to a wider range of  problem types [6, 7]. Over the 

past two decades, MAs have been applied across various scientific domains to address optimization 

challenges [8, 9]. Notably, when dealing with real-world problems characterized by non-convexity, 

nonlinearity, non-smoothness, or dynamics [10], MAs exhibit higher efficiency and popularity than traditional 
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mathematical methods due to their simplicity and independence from problem-specific gradient information 

[11]. The stochastic nature of  MAs enables them to search candidate solutions across the entire space, 

effectively avoiding local optima [12, 13]. As described in the literature [14], these algorithmic characteristics 

make them particularly suitable for practical challenges where derivative information is unclear. Even in 

limited environments or with constrained computational resources, MAs can generate excellent solutions to 

optimization problems regardless of  this fact that they are single objective, multi objective or many objective 

[15]. Different MAs originate from distinct research perspectives, leading to variations in concept and 

performance. 

MAs draw inspiration from real-world phenomena and replicate the potential operational rules found 

in physical or biological group dynamics to discover improved heuristic solutions. Currently, there is no rigid 

classification for MAs in the existing research. In a recent review paper [16], MAs may be classified into three 

branches: physics-based, swarm-based, and evolution-based methods. Physics-based methods derive 

inspiration from physical phenomena observed in reality and devise a set of  rules to simulate the underlying 

principles. By modeling the interaction of  various forces, such as electromagnetic, inertial, and gravitational 

forces, these methods enable exploring the solution space. Examples include the well-known simulated 

annealing (SA) [17], the earlier proposed black hole optimization (BHO) [18], equilibrium optimizer (EO) 

[19], multi-verse optimizer (MVO) [20], the galaxy-based search algorithm (GbSA) [21], sonar-inspired 

optimization (SIO) [22], RIME algorithm (RIME) [23], gravitational search algorithm (GSA) [24], water cycle 

algorithm (WCA) [25], central force optimization (CFO) [26], and electromagnetic field optimization (EFO) 

[27], etc. 

Swarm-based algorithms are a class of  methods designed to explore the interactions between 

individuals in a group and their behavior in relation to the environment. Examples include the well-known 

particle swarm optimization (PSO) [28], artificial bee colony (ABC) [29], hunger games search (HGS) [30], 

slime mold algorithm (SMA) [31], Harris Hawk optimizer (HHO) [32], parrot optimizer (PO) [33], cuckoo 

search (CS) [34], or ant colony optimization (ACO) [35], hunger games search (HGS) [36], Runge Kutta 

optimization (RUN) [37], weighted mean of  vectors (INFO) [38], colony predation algorithm (CPA) [39], 

grey wolf  optimizer (GWO) [40], liver cancer algorithm (LCA) [41] and grasshopper optimization algorithm 

(GOA) [42], etc. 

Meanwhile, most evolution-based algorithms are inspired by natural and biological evolution, such as 

crossover, reproduction and mutation. Examples include the well-known genetic algorithm (GA) [43], the 

genetic programming (GP) [44], and the differential evolution algorithm (DE) [45]. Evolution-based 

methods can search for optimal solutions globally through these operations. Their robustness usually allows 

them to deal with noise and uncertainty in the solution space [46]. Almost all such algorithms start from the 

perspective of  natural selection theory and create unique models. However, the variability of  ideas between 

different algorithms arises from studying different species and their distinct biological habits for evolving 

and producing new offspring. Examples include fruit fly optimization (FOA) [47], bio-geography-based 

optimizer (BBO) [48], black widow optimization algorithm (BWOA) [49], evolutionary strategy (ES) [50], 

etc.  

As stated by the "No Free Lunch Theorem" (NFL) [51], these methods cannot guarantee superiority 

across all challenges. Researchers seek various avenues to enhance and improve existing algorithms, striving 

to overcome the limitations algorithms face when confronted with various engineering problems [52]. These 

strategies encompass implementing optimization modules, refining algorithm structures, and leveraging 

parallel computing or distributed systems. Over time, with ongoing technological advancements, these 

strategies may become increasingly complex, potentially reducing the space for performance improvement. 



Moreover, at times, further improvements encounter diminishing returns, where each enhancement yields 

progressively smaller performance gains or fails to meet expected standards. Developing new algorithms can 

alleviate such stagnation and provide fresh sources of  inspiration for enhancing existing ones. Many existing 

optimization algorithms exhibit their own strengths and limitations [53], offering valuable insights and aiding 

in the development of  more resilient optimization algorithms. Furthermore, one of  the current research 

motivations is continually seeking improvements and innovations to address evolving and emerging 

problems [54]. By continuously introducing new ideas, methods, and technologies, researchers can propel 

advancements in the field of  optimization algorithms, offering a diverse array of  solutions to real-world 

problems. 

Within the domain of  MAs, scholars engage in a scholarly pursuit that involves reviewing academic 

literature and conducting interdisciplinary research to assimilate the insights of  their predecessors, 

accumulate empirical knowledge, and glean inspiration. Behind these flashes of  light, inspiration has always 

been present in people's view. Above the Earth's polar regions, a mesmerizing and extraordinary 

phenomenon occurs – the aurora. Behind it lies a complex interplay of  energetic particles in the solar wind, 

influenced by Earth's magnetic field, colliding with the atmosphere, resulting in a series of  intricate 

movements. Drawing inspiration from the Aurora phenomenon, a metaheuristic algorithm called Polar 

Lights Optimization (PLO) is proposed in this paper. In PLO, two novel models are formed by simulating 

the flight trajectories of  energetic particles and their motion processes. The flight of  energetic particles 

toward the Earth is modeled in PLO, which contains three main forms of  motion and is used to propose 

three optimization strategies, including: 

1) A gyration motion method is introduced to replicate the situation where energetic particles are 

deflected poleward by Earth's magnetic field and subsequently collide with atmospheric molecules on their 

way to Earth's poles. This method is proposed based on physics laws, helping to find optimal solutions locally 

and improving convergence accuracy. 

2) An auroral oval walk is proposed by modeling the phenomenon where energetic particles gradually 

converge above the poles and form a luminous elliptical ring. Energetic particles move freely within the oval 

ring, colliding with other particles and chaotically following changes in Earth's magnetic field. This strategy 

aims to explore the entire solution space in large steps, using the center of  mass of  the energetic particles as 

a guide to ensure the convergence direction of  the entire cluster. 

3) Throughout the entire flight process of  high-energy particles, collisions between particles occur 

continuously. A particle collision strategy is proposed by simulating these chaotic and disordered collisions. 

This strategy enhances the algorithm's ability to escape local optima.  

A series of  experiments are conducted to evaluate the performance of  PLO. To verify the 

competitiveness of  PLO among popular MAs, several sets of  comparison experiments are established. PLO 

is compared with nine classic algorithms and eight high-performance algorithms using the IEEE CEC 2014 

benchmark function set. Additionally, PLO is compared with five highly referenced algorithms and four 

variants using the latest benchmark function set from IEEE CEC 2022. Subsequently, a series of  qualitative 

analysis experiments are conducted to elucidate PLO's characteristics and adaptability. 

After these works, this research involves two key issues: multi-threshold image segmentation and feature 

selection. In the case of  multi-threshold image segmentation, we take advantage of  PLO to address intricate 

challenges in image segmentation. By integrating PLO with a Multi-Threshold Image Segmentation (MTIS) 

system, we achieve higher accuracy in calculating the optimal threshold set. In the experiment, we conduct a 

series of  segmentation experiments using ten image samples from the medical dataset "Invasive Ductal 

Carcinoma" (IDC) [55]. And a multi-group comprehensive comparative study is designed to compare PLO 



with seven other algorithms as benchmarks at different threshold levels, evaluating the results of  image 

segmentation using various methods of  threshold set computation. In terms of  feature selection, this paper 

develops a binary version of  PLO to address challenging feature selection issues. This paper devises a PLO-

based wraparound feature selection method, enabling the selection of  pertinent features and evaluating the 

proposed PLO's performance using eight medical datasets, demonstrating the algorithm's advantages in real-

world optimization problems. 

These results establish PLO as a potent optimization tool to address a diverse array of  practical 

problems. This paper contributes the following: 

(1) Drawing inspiration from the fascinating phenomenon of  the aurora borealis, a novel algorithm 

polar lights optimizer is proposed. 

(2) In this study, the effectiveness of  PLO is examined using the classical IEEE CEC2014 and the latest 

IEEE CEC2022 unconstrained benchmark function sets. In-depth comparisons are made with the 

simulation results of  various well-known algorithms. 

(3) A set of  qualitative analysis experiments are designed to analyze the optimization solution process 

of  PLO. 

(4) PLO is integrated with the MTIS system to provide a superior threshold set for breast cancer images 

segmentation. 

(5) Developed a wraparound feature selection model based on binary version (bPLO). The performance 

of  the proposed method is evaluated using medical datasets, demonstrating proficiency in real optimization 

problems. 

The remainder of  the paper consists of  the following sections: Section 2 delves into the intricate 

mechanism underlying aurora formation while simultaneously elucidating the insights gleaned from it. 

Section 3 expounds on the modeling aspects of  the PLO, shedding light on its conceptualization and 

implementation. Section 4 compares the PLO with existing algorithms, emphasizing its novelty. Section 5 

shows the experiments set up to test the performance of  the PLO, meticulously analyzing the obtained 

results. Section 6 discusses the application of  the PLO to the MTIS and FS problems. Finally, Section 7 

encapsulates the entirety of  the work in this paper, outlining the prospects and avenues for further research. 

2. Inspiration from the polar lights, or aurora borealis  

The aurora is a beautiful natural phenomenon of  electrical impulses occurring at altitudes between 80 

and 500 kilometers above the horizon. The Earth's magnetic field forms a strong magnetic shield from the 

South Pole to the North Pole, manifesting itself  in a pattern of  curved magnetic lines of  force. As a result, 

energetic particles are funneled toward the poles in a spiral motion, colliding with the many molecules of  

atmospheric gas over the poles. These collisions produce luminescence, as shown in Figure 1. Auroras form 

as a result of  the interaction between solar activity, the Earth's magnetic field, and the atmosphere[56]. 



 

Figure 1. An aurora borealis light curtain high in the sky1 

Initially, the main driving force behind the formation of  auroras is solar activity. On the surface of  the 

Sun, there exists a high-temperature plasma containing charged particles commonly referred to as the solar 

wind. The charged particles and their complex and variable motion processes are the focus. These particles 

carry enormous amounts of  energy from the Sun into the vastness of  cosmic space. In addition, the Earth 

possesses a powerful magnetic field that arises from the rotation of  its core and the motion of  its outer core. 

This magnetic shield wraps around the Earth, forming a protective layer known as the magnetosphere. When 

charged particles from the solar wind enter the Earth's magnetosphere, they interact with the magnetic field. 

Changes in the trajectory of  charged particles are due to the Earth's magnetic field. Specifically, it will 

encounter the Lorentz force and be deflected in a specific direction, thus entering an orbit consisting of  the 

geomagnetic field. As shown in Figure 2, this orbit will guide the charged particle close to the Earth's polar 

regions, the North and South Poles. At this stage, the charged particles have two velocity components: parallel 

to the magnetic field and perpendicular to it. As a result, they are in gyratory motion while traveling along 

the magnetic field lines. This marks the beginning of  the first major phase, in which the trajectories of  the 

energetic particles undergo their first change. During this phase, the charged particles will gradually 

encounter the atmosphere over the polar regions and collide with gas molecules in the atmosphere. Then, 

the energy initially possessed by the charged particles will gradually be transferred to the air molecules, 

causing them to ionize and subsequently glow. Due to the loss of  energy, the trajectory radius of  the charged 

particles will be significantly affected and reduced, which again leads to a change in their trajectory. 

 
1 Pictures obtained from https://pixabay.com/ as copy right free images  

(a) https://pixabay.com/photos/aurora-borealis-lake-snow-aurora-5599375/  

(b) https://pixabay.com/photos/aurora-polar-lights-northern-lights-1190254/ 

https://pixabay.com/


 

Figure 2. Solar wind energetic particles enter the earth's magnetic field lines. 

As a result of  the energy transfer due to the collision, the gas molecule is excited, and the electrons in 

the ground state jump from one energy level to another and then back to the ground state. During the energy 

level jump, the gas molecule releases energy and produces photons. These photons are the visible light that 

makes up the aurora borealis. Different gas molecules have different energy level structures and emission 

spectra. For example, oxygen molecules emit green and red light, and nitrogen molecules emit violet and 

blue light. As the collision continue, the energy contained in the energetic particles is gradually lost, leading 

to the transition to a significant phase. These particles encounter considerable obstacles in directly 

bombarding polar ice and the ground due to atmospheric obstructions. Instead, they pause briefly in the 

atmosphere and gather to form a luminous ring, as shown in Figure 3. This glowing ring band is usually oval 

around the polar axis, hence the name "auroral oval". Charged particles that are in an auroral oval undergo 

further collisions with gas molecules. More specifically, the energy of  electrons drops relatively quickly and 

is absorbed by the atmosphere, while the energy of  protons drops more slowly. After protons collide with 

gas molecules, some of  them will be absorbed by the atmosphere, while the other part will deviate from the 

ring band region in the atmosphere and bounce along a different path. The periods of  magnetic quiescence 

and magnetic perturbation in the Earth's magnetic field affect the auroral oval, causing irregular changes that 

manifest as irregular expansion and contraction. Thus, in the second major phase, the trajectory of  the 

particle undergoes a third change. After three trajectory changes, the journey of  the particles towards the 

Earth will end. 



 

Figure 3. Aurora oval in the Earth's Arctic 

In summary, the formation of  auroras is determined by the interaction between charged particles in the 

solar wind and the Earth's magnetic field. This interaction causes the charged particles to enter the Earth's 

atmosphere and contact with gas molecules, thereby exciting them and releasing energy in the form of  

photons, ultimately forming visible bands of  colored light. In this study, we designed a new model to simulate 

this complex process. The model includes an in-depth study of  the principles of  aurora formation, precise 

tracking of  the particle trajectories, division of  the entire process into two distinct phases, and three changes 

to the trajectory. Based on this elaborate model, three strategies are proposed to lead to Polar Lights 

Optimization (PLO). 

3. Methodology 

This section gives the inspiration for PLO, i.e., an optimization strategy based on the motion process 

of  energetic charged particles guided by a magnetic field. The mathematical model is expounded upon, 

enabling comprehension of  PLO's structure through the presentation of  pseudo-code, a flowchart, and the 

computation of  the algorithm's time complexity. 

3.1 Mathematical model of  the PLO 

Inspired by the phenomenon of  aurora borealis, a stream of  charged particles (solar wind) moves in 

the air near the north and south poles of  the Earth under the influence of  the magnetic field environment 

and displays a variety of  shapes and brilliant colors in the night sky. Auroras are produced under the 

atmosphere, magnetic field, and high-energy charged particles. The behavior of  auroras is attributed to 

various dynamic processes of  interaction between charged particle streams and magnetic fields [57]. In this 

study, the gyration motion is proposed through the motion process of  energetic charged particles spiraling 

forward around magnetic lines of  inductance; then, the aurora oval walk is proposed by synthesizing the 

energies, velocities, and trajectories of  charged particles, as well as the compositions and conditions in the 

atmosphere, where auroras present an elliptical luminous ring belt in the sky. Finally, the particle collision 

strategy is proposed through the phenomenon of  energetic charged particles colliding with one another 

continuously on their flights. 



3.1.1 Initialization phase 

In PLO, the iterative process will start with an initial population that is generated based on pseudo-

random numbers. As described in Eq. (1), the entire population is represented in the form of  a matrix with 

𝑁 rows and 𝐷 columns in size, where 𝑁 denotes the size of  the candidate solutions contained in the 

population and 𝐷 denotes the scalable dimension of  the solution space. 

𝑋(𝑁, 𝐷) = 𝐿𝐵 + 𝑅 × (𝑈𝐵 − 𝐿𝐵) = [

𝑋(1,1) 𝑋(1,2) ⋯ 𝑋(1, 𝐷)

𝑋(2,1) 𝑋(2,2) ⋯ 𝑋(2, 𝐷)
⋮ ⋮ ⋱ ⋮

𝑋(𝑁, 1) 𝑋(𝑁, 2) ⋯ 𝑋(𝑁, 𝐷)

] (1) 

where 𝑈𝐵  and 𝐿𝐵  denote the boundaries of  the solution space, and 𝑅  denotes a random number 

sequence that takes values in [0,1]. In PLO, the travel of  a swarm of  energetic charged particles flying 

towards the Earth around the magnetic susceptor towards the polar center is simulated with a search agent 

in the solution space. 

3.1.2 Gyration motion 

This section will delineate the method for searching for optimal solutions in PLO, namely the gyration 

motion, inspired by the extensive journeys of  high-energy particles toward the Earth. Roughly 150 million 

kilometers from Earth, the Sun continuously emits electrons and protons towards our planet, which is 

entirely enveloped by its magnetic field, extending outward from the Earth by approximately 50,000 to 65,000 

kilometers [58]. As these particles approach Earth, they encounter resistance from the Earth's magnetic field 

and radiate in various directions under its influence. During this process, charged particles approaching Earth 

interact with its magnetic field, experiencing rotational motion along magnetic field lines, a phenomenon 

describable by the Lorentz force. Mathematically, assuming a charge (𝑞) and velocity (𝑣) for the charged 

particle within Earth's magnetic field (𝐵), the Lorentz force 𝐹𝐿 can be expressed as Eq. (2): 

𝐹𝐿 = 𝑞𝑣𝐵 (2) 

The 𝐹𝐿 causes a centripetal force to be exerted on a charged particle, resulting in its gyratory motion 

along the magnetic lines of  force in a magnetic field. Also, the equation of  a charged particle can be described 

by the Lorentz force and Newton's second law: 

𝐹𝐿 = 𝑚
𝑑𝑣

𝑑𝑡
 (3) 

where 𝑚 is the mass of  a charged particle. This equation describes the variation of  the velocity of  the 

charged particle with time so that its trajectory in the magnetic field can be determined. By joining the above 

two equations (Eq. (2) and Eq. (3)), a first-order ordinary differential equation can be obtained, as shown in 

Eq. (4): 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑞𝑣𝐵 (4) 

This differential equation describes the change in velocity of  the charged particle over time. Solving this 

differential equation yields the law governing the variation of  the particle's velocity with time, providing 

insight into its motion within the Earth's magnetic field, as depicted below. 

 Rearrange the two sides and integrate them simultaneously, with the interval of  integration from the 

initial velocity 𝑣0 to 𝑣 and the time from 0 to 𝑡: 



𝑑𝑣

𝑣
=

𝑞𝐵

𝑚
𝑑𝑡 (5) 

∫
1

𝑣
𝑑𝑣 = ∫

𝑞𝐵

𝑚
𝑑𝑡

𝑡

0

𝑣

𝑣0

 (6) 

ln(𝑣) − ln(𝑣0) =
𝑞𝐵𝑡

𝑚
 (7) 

𝑣

𝑣0

= 𝑒
𝑞𝐵𝑡
𝑚  (8) 

𝑣(𝑡) = 𝑣0𝑒
𝑞𝐵𝑡
𝑚  (9) 

In an ideal scenario, the aforementioned equation adequately describes the motion of  charged particles 

within Earth's magnetic field, as illustrated in Figure 4. However, these high-energy particles encounter 

resistance from air molecules in the atmosphere, resulting in the non-smooth circling motion. This non-

smooth circling motion is due to the damping effect of  the atmosphere. As charged particles enter the 

atmosphere, collisions with atmospheric molecules diminish their kinetic energy, causing the radius of  their 

circular motion to decrease.  

 

Figure 4. Charged particles gyrate around the magnetic line. 

After accounting for the damping effect of  the atmosphere on charged particles, we can incorporate 

this damping phenomenon into the equation governing the variation of  the particle's velocity with time. In 

this equation, we introduce a damping factor 𝛼, representing the rate of  decay of  the particle's velocity. 

Thus, the equation (Eq. (4)) describing the variation of  the charged particle's velocity with time can be 

modified accordingly, as in Eq. (10). 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑞𝑣𝐵 − 𝛼𝑣 (10) 

The modification results in a nonhomogeneous first-order linear differential equation, Eq. (10). By 

employing the method of  constant variation, assuming a solution 𝑣 = 𝐶𝑒𝜆𝑡 , where 𝐶  and 𝜆  are 

undetermined coefficients. Substituting this into the equation, we obtain: 

𝑚𝜆𝐶𝑒𝜆𝑡 = 𝑞𝐵𝐶𝑒𝜆𝑡 − 𝑎𝐶𝑒𝜆𝑡 (11) 

Solving yields 𝜆 =
𝑞𝐵−𝛼

𝑚
, so the final solution to the equation Eq. (12) is: 

𝑣(𝑡) = 𝐶𝑒
𝑞𝐵−𝑎

𝑚
𝑡
 (12) 

where 𝐶 is the constant of  integration, in this equation the charge 𝑞 carried by the charged particle, the 

mass 𝑚 and the strength of  the earth's magnetic field 𝐵 do not change. For simplicity, in this strategy, 𝐶, 

𝑞, and 𝐵 take the value of  1, and 𝑚 is 100. The damping factor 𝛼 is a random value taking the value of  

[1,1.5], and the fitness evaluate process of  the algorithm is utilized within the strategy to simulate the time 



(𝑡) course of  Eq. (12).  

In this section, the gyration motion within PLO introduces an equation describing the variation of  

charged particle velocity over time. This equation combines the Lorentz force law and Newton's second law. 

Moreover, considering the damping effect exerted by the atmosphere on the charged particles, a damping 

factor 𝛼 is introduced into the equation, enhancing its precision. 

When charged particles undergo gyration motion, they exhibit the following characteristics: 

 (1) Prior to coming into contact with magnetic field lines, charged particles follow their initial trajectory. 

Only when they enter the influence range of  the Earth's magnetic field do they gradually alter their path, 

spiraling around the magnetic field lines. 

 (2) During the gyration motion, particles experience damping effects generated by the atmosphere, 

causing a reduction in their energy and consequent decrease in velocity. 

 (3) The damping effects of  the atmosphere become increasingly pronounced as the particles travel 

further. 

 (4) Despite the occurrence of  damping effects, the ultimate destination of  particle flight remains 

unchanged (the Earth's poles). 

This strategy enhances the algorithm's capability for local exploitation, enabling it to finely exploit local 

regions and explore optimal solutions within those regions. 

3.1.3 Aurora oval walk 

This section describes the auroral oval walk in PLO, a method that helps to search the solution space 

efficiently. The idea of  this strategy originated from the extensive study of  auroras by astronomical observers. 

They concluded that auroras tend to form along an elliptical band called an auroral oval. The size of  the 

auroral oval depends on the north-south component of  the interplanetary magnetic field, and its boundaries 

vary with geomagnetic activity. The Earth's complex atmosphere further contributes to the movement of  

various energetic particles in this phenomenon. 

The intricate fluctuation of  the auroral oval walk will significantly impact the global search. It is the 

unpredictable chaos that fulfills the need of  the PLO for a fast global search of  the solution space. It is 

worth noting that Levy Flight (LF) is often used in MAs to enhance global exploration because it is essentially 

a random non-Gaussian Walk. Its step values are dispersed based on the Levy stable distribution. The LF 

can be expressed in Eq. (13) as follows: 

𝐿𝑒𝑣𝑦(𝑑)~|𝑑|−1−𝛽, 0 < 𝛽 ≤ 2 (13) 

where 𝛽 denotes an important LF index of  adjustment stability and 𝑑 is the step size. 

In the auroral oval walk, the energetic particles simulated with LF are affected by geomagnetic activity 

as well as the atmosphere and exhibit contraction of  the auroral oval boundary in the polar direction and 

expansion in the equatorial direction. The specific change process is shown in Eq. (14): 

𝐴𝑜 = 𝐿𝑒𝑣𝑦(𝑑) × (𝑋𝑎𝑣𝑔(𝑗) − 𝑋(𝑖, 𝑗)) + 𝐿𝐵 + 𝑟1 × (𝑈𝐵 − 𝐿𝐵)/2 (14) 

𝑋𝑎𝑣𝑔 =
1

𝑁
× ∑ 𝑋(𝑖)

𝑁

𝑖=1

 (15) 

where 𝑋𝑎𝑣𝑔  is the center-of-mass position of  the energetic particle population, calculated by Eq. (15). 

𝑋(𝑖, 𝑗) is the current position of  the energetic particles, while 𝑋𝑎𝑣𝑔(𝑗) − 𝑋(𝑖, 𝑗) represents the tendency 

of  the particles to move. 𝐴𝑜  is a complex variation of  the auroral oval simulated by the dispersed 

distribution of  the LFs, which drive energetic particles between the poles and the equator. The motion of  



each particle is briefly simulated as shown in Figure 5. 

 

Figure 5. The aurora oval walk 

This strategy enhances PLO's global exploration capabilities, allowing it to quickly navigate the entire 

solution space and search for valuable regions.  

In the PLO, the search process follows a unique pattern. It comprises two main motion patterns: 

gyration motion and aurora oval walk, each representing distinct search strategies and behavioral 

characteristics. Together, they constitute the trajectory of  particles flying from the start (the Sun) to the end 

(the Earth's poles).  

Firstly, the gyration motion manifests as particles spiraling along the Earth's magnetic field lines, 

exhibiting slow movement along fixed trajectories. This motion pattern emphasizes local exploitation and 

fine adjustments, aiming to explore local solution spaces more deeply to find local optima or optimize the 

local structure of  the current solution. This aligns with the local search phase in MA, where subtle 

adjustments and small steps are taken to enhance the quality of  solutions, bringing them closer to the optimal 

solution. 

Secondly, the aurora oval walk involves rapid motion around candidate points for the best solution or 

local optima. This pattern emphasizes global exploration characteristics, with particles exploring the solution 

space with larger steps to discover more valuable regions. This corresponds to the global exploration phase 

in MA, where the solution space is searched with larger step lengths to find global optima or better solutions. 

Therefore, this paper combines these two strategies in PLO, and the proposed new computational 

model is represented by Equation (16). 

𝑋𝑛𝑒𝑤(𝑖, 𝑗) = 𝑋(𝑖, 𝑗) + 𝑟2 × (𝑊1 × 𝑣(𝑡) + 𝑊2 × 𝐴𝑜) (16) 

where 𝑋𝑛𝑒𝑤(𝑖, 𝑗) is the position of  the energetic particle after completing the update, and 𝑟2 represents 

the interference brought by factors such as the uncontrollable environment for the particle and is a value 

taking the value of  [0,1]. To maximize the efficiency of  local exploitation and global exploitation during 

the process, two adaptive weights 𝑊1  and 𝑊2  are introduced that change with each iteration of  the 

algorithm. as calculated in Eq. (17) and Eq. (18) are obtained: 

𝑊1 =
2

(1 + 𝑒−2(𝑡/𝑇)4
)

− 1 (17) 



𝑊2 = 𝑒−(2𝑡/𝑇)3
 (18) 

where 𝑊1 and 𝑊2 control the weights of  the gyration motion and the auroral oval walk in Eq. (16), as 

shown in (a) in Figure 6, the weight of  𝑣(𝑡) will increase with 𝑊1; as shown in (b) in Figure 6, the weight 

of  𝐴𝑜, 𝑊2, gradually decreases. As the algorithm iterates, global search and local exploitation rely on the 

changing weights to achieve a balance and explore the optimal solution. 

 

Figure 6. Trajectories of  change in 𝑊1 and 𝑊2 

In summary, the particle motion in the PLO encompasses both global exploration and local exploitation. 

Comprehensive optimization of  the solution space is achieved by combining the gyration motion and aurora 

oval walk motion patterns. This design aims to strike a balance between global search and local optimization, 

intending to effectively find the optimal solution or solutions close to optimality within the solution space.  

3.1.4 Particle collision 

Robust global and strong local strategies are not the sole pivotal constituents of  a refined algorithm. 

Additionally, a more potent capability to evade convergence into local optima or break free from them is 

imperative. Consequently, this section introduces a particle collision strategy to boost the capacity to jump 

out of  a stuck situation. 

In the solar wind, charged particles such as electrons and protons travel from the sun to the earth at 

high speeds and collide with each other as they hit the atmosphere. When they enter the Earth's magnetic 

field and are guided by magnetic lines of  force, they move along the lines near the Earth's polar regions. 

During this process, energetic particles that have changed speed and direction collide violently with each 

other. These collisions can lead to the transfer of  energy and the conversion of  energy forms, further 

enhancing the process of  aurora formation. Collusions can lead to changes in the speed and direction of  the 

particles and scatter them in different areas. In addition, they can stimulate the excitation and ionization of  

more particles, thus enhancing the brightness and complexity of  the aurora [59]. Thus, particle collisions 

play a crucial role in the formation of  auroras. 

Inspired by this, a particle collision strategy is proposed. The chaotic collision between particles allows 

PLO to leave the local optimal. In this strategy, if  we focus on the current moving particle, it may chaotically 

collide with any particle in the particle swarm to create a new position along the way, as shown in Figure 7. 

If  a particle is the focus of  attention, it may randomly drift out of  the established flight trajectory and collide 

with any of  its surrounding particles. When the particle it is about to collide with is used as a reference, the 

collision may occur at any angle, just like the uncertain outcome of  a novice billiards game. Also, minor 

collisions can occur when energetic particles fly from the solar to the earth. However, as these particles enter 



the atmosphere and converge within the auroral oval, collisions occur more frequently, resulting in the ever-

changing shape of  the aurora. The mathematical model is shown in Eq. (19): 

𝑋𝑛𝑒𝑤(𝑖, 𝑗) = 𝑋(𝑖, 𝑗) + sin(𝑟3 × 𝜋) × (𝑋(𝑖, 𝑗) − 𝑋(𝑎, 𝑗)), 𝑟4 < 𝐾 𝑎𝑛𝑑 𝑟5 < 0.05 (19) 

 𝐾 = √(𝑡/𝑇) (20) 

where 𝑋(𝑎, 𝑗) represents any particle in the particle cluster. Collisions between particles become more 

frequent as the algorithm proceeds and are therefore controlled by the collision probability 𝐾, calculated by 

Eq. (20). 𝑟3 and 𝑟4 are random values, taking values in [0,1]. 

 

 

Figure 7. Chaotic collisions between particles. 

3.2 The proposed PLO 

In essence, this paper draws inspiration from the aurora, a captivating physical phenomenon, and melds 

it with the principles of  physics to devise PLO. Search agents are likened to high-energy particles emanating 

from solar radiation towards the Earth, all subject to the influences of  magnetic fields and atmospheric 

conditions as they journey towards the Earth's poles. Nevertheless, owing to various uncontrollable factors, 

the trajectory of  each particle remains unpredictable, yet converging toward the vicinity of  the polar regions 

constitutes the ultimate destination of  their journey. 

In PLO, initially charged, the geomagnetic force influences particles and moves them towards the poles, 

continuously colliding with gas molecules in the atmosphere and gradually impeding their gyration motion. 

Subsequently, these particles gather near the upper atmosphere of  the poles, forming an elliptical-shaped 

region known as the auroral oval. Due to the irregular deformation of  the auroral oval, this elliptical ring-

shaped region becomes unstable, contracting towards the poles during magnetic quiescence periods and 

expanding towards the equator during disturbance periods. 

Inspired by these phenomena, we based our proposal on the Lorentz force theorem and Newton's 

second law to propose a modified modeling equation for the variation of  charged particle velocity over time, 

incorporating a damping factor. Furthermore, we propose an auroral oval walk strategy based on the auroral 

oval phenomenon. Then, by combining the gyration motion and aurora oval walk motion patterns, we 

construct comprehensive optimization progress to assist PLO in global exploration and local exploitation. 

Finally, we introduced the particle collision strategy to facilitate interactions among particles, enabling the 

PLO to effectively escape from local optima states. 

As shown in Algorithm 1, the PLO’s pseudo-code can better help to understand the process. In Figure 



8, flowcharts will clearly show the structure.  

Algorithm 1 PLO’s pseudo-code 

Parameters initializing: 𝐹𝐸𝑠 = 0, 𝑀𝑎𝑥𝐹𝐸𝑠, 𝑡 = 0 

Initialize high-energy particle cluster 𝑋. 

Calculate the fitness value 𝑓(𝑋). 

Sort 𝑋 according to 𝑓(𝑋).  

Update the current optimal solution 𝑋𝑏𝑒𝑠𝑡 . 

While 𝐹𝐸𝑠 < 𝑀𝑎𝑥𝐹𝐸𝑠 

   Calculate the velocity 𝑣(𝑡) for each particle, according to Eq. (12). 

   Calculate aurora oval walk 𝐴𝑜 for each particle, according to Eq. (14). 

   Calculate weights 𝑊1 and 𝑊2 according to Eq. (17) and Eq. (18). 

   For each energetic particle do 

      Updating particles 𝑋𝑛𝑒𝑤 using Eq. (16). 

      If 𝑟4 < 𝐾 and 𝑟5 < 0.05 

          Particle collision strategy: update particle 𝑋𝑛𝑒𝑤 using Eq. (19). 

      End If 

Calculate the fitness 𝑓(𝑋𝑛𝑒𝑤). 

𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 1. 

   End For 

If 𝑓(𝑋𝑛𝑒𝑤) < 𝑓(𝑋) 

Iterating over 𝑋 using the greedy selection mechanism. 

End If 

   Sort 𝑋 according to 𝑓(𝑋).  

   Update the optimal solution 𝑋𝑏𝑒𝑠𝑡 . 

   𝑡 = 𝑡 + 1. 

End While 

Return the 𝑋𝑏𝑒𝑠𝑡 . 

 

 

Figure 8. The flowchart of  PLO 

The algorithmic time complexity for calculating PLO will be concerned with the maximum number of  

evaluations (𝑀𝐸) set for the problem, the size of  the population (𝑛), and the dimension size of  the problem 



(𝑑). Meanwhile, the complexity of  PLO mainly includes the gyration motion strategy, auroral oval walk 

strategy, particle collision strategy, and fitness value calculation. First, due to the unique mechanism design 

of  the PLO, the gyration motion and the auroral oval strategy are organically combined, so the time 

complexity of  the two strategies together is 𝑂(𝑛 × 𝑑). Then, the complexity of  the particle collision strategy 

is 𝑂(𝑛 × 𝑑). Finally, the fitness value computation requires 𝑂(𝑛 × 𝑙𝑜𝑔𝑛) computation time. Therefore, 

the complexity of  the PLO is 𝑂(𝑃𝐿𝑂) = 𝑂(2 × (𝑛2 × 𝑑) × 𝑙𝑜𝑔𝑛 × 𝑀𝐸). 

5. Performance evaluation experiments and analysis 

The preceding section elucidated the theoretical model of  PLO and its feasibility in implementation. 

This section will examine the performance of  PLO. Firstly, several sets of  comparative experiments are 

devised to substantiate the advantages of  PLO over existing algorithms, including comparisons between 

PLO and similar peers and between PLO as well as high-performance enhanced algorithms. Subsequently, 

the optimization process of  PLO will be explored, analyzing its advantages in seeking optimality and its 

search characteristics. 

5.1 Experimental settings 

In the field of  scientific research, maintaining the fairness and appropriateness of  experiments is crucial 

to judging the effectiveness of  new methods. In this experiment, to ensure the fairness of  the trial, we 

establish a set of  30 search agents in the initial population for all participating algorithms, and the termination 

condition is set to 300,000 times for the fitness evaluation. In addition, 30 separate runs of  each algorithm 

are performed to mitigate the effects of  randomness and prevent any one run from skewing the 

understanding of  the algorithm's true performance. 

Then this paper utilizing benchmark functions from the classical IEEE CEC2014 and the latest IEEE 

CEC2022. These two benchmark datasets are universally recognized datasets for evaluating the performance 

of  different optimization methods against established criteria.  

In the results evaluation, the Wilcoxon Signed-Rank Test (WSRT) [61] is utilized to assess different 

algorithms, comparing and ranking. WSRT examines whether the differences between PLO and other 

algorithms' test results are significant, with a p-value less than 0.05 indicating a significant difference and a 

value greater than or equal to 0.05 suggesting high similarity. Moreover, differences and comparative 

superiority are denoted using "+/-/=" symbols for counting statistics. Additionally, the Friedman Test (FT) 

[62] is employed to compute the average results of  algorithms across all functions, facilitating an intuitive 

presentation of  the comparative outcomes through rankings. 

5.2 Performance analysis of  the PLO 

In this section, the advantages and characteristics of  the algorithm are experimentally verified. Initially, 

the performance advantages of  the algorithm are experimentally validated by comparing PLO with its 

counterparts. Furthermore, it is juxtaposed with current state-of-the-art algorithms to validate our 

contribution and obtain a comprehensive understanding of  the landscape in the current field. Subsequently, 



qualitative analysis experiments are conducted to examine the PLO's optimization process and convergence 

behavior fully. 

5.2.1 Comparison with classical algorithms 

This subsection compares PLO with 9 classical algorithms utilizing 30 function problems from IEEE 

CEC2014. Table 5 lists all the algorithms and parameter settings. In this section, the average value (AVG) 

and standard deviation (STD) of  each algorithm after 30 independent runs are listed in Table 6. 

Table 5. Algorithms and parameter settings. 

Algorithms Parameter(s) 

Particle swarm optimizer (PSO) [63] 𝑐1 = 2; 𝑐2 = 2; 𝑉𝑚𝑎𝑥 = 6 

Gravitational search algorithm (GSA) [24] 𝑅𝑛𝑜𝑟𝑚 = 2 

Harris Hawk optimizer (HHO) [32] 𝑘 = 0 

Moth-flame optimization algorithm (MFO) [64] 𝑏 = 1 

Ant colony optimization for continuous domains (ACOR) [35] 𝑘 = 10; 𝑞 = 0.5;  𝑖𝑏𝑠𝑙𝑜 = 1 

Multi-verse optimizer (MVO) [20] 𝑊𝑚𝑎𝑥 = 1; 𝑊𝑚𝑖𝑛 = 0.2 

Whale optimization algorithm (WOA) [65] 𝑎1 = [2,0]; 𝑎2 = [−2, −1]; 𝑏 = 1 

Sine cosine algorithm (SCA) [66] 𝑎 = 2 

Jaya optimization algorithm (JAYA) [67] ~ 

Polar lights optimization (PLO) 𝑚 = 100;  𝑎 = [1,1.5] 

Table 6. Comparison results of  the PLO and 9 classical algorithms 

Function F1  F2  F3  

Algorithm AVG STD AVG STD AVG STD 

PLO 2.11804E+06 8.78432E+05 1.78164E+04 8.92904E+03 7.31835E+03 3.13733E+03 

PSO 8.64579E+06 2.34388E+06 1.48018E+08 1.81499E+07 9.62486E+02 1.00254E+02 

GSA 1.40443E+06 4.25286E+05 2.11526E+07 2.35424E+06 7.13329E+03 2.85544E+03 

HHO 6.03793E+06 2.74404E+06 9.24189E+06 2.00882E+06 2.42856E+03 7.22091E+02 

MFO 1.00050E+08 9.61917E+07 1.32557E+10 8.91896E+09 1.02706E+05 6.27487E+04 

ACOR 4.11557E+06 4.95229E+06 6.01421E+07 2.36075E+08 1.03365E+04 1.24159E+04 

MVO 7.51352E+07 7.05984E+07 1.30532E+10 9.75808E+09 8.88128E+04 4.61328E+04 

WOA 3.11295E+07 1.23148E+07 3.91285E+06 5.75133E+06 3.14270E+04 2.60307E+04 

SCA 2.29334E+08 5.89800E+07 1.66283E+10 3.54635E+09 3.62478E+04 6.38897E+03 

JAYA 5.14444E+07 2.21353E+07 5.18576E+09 8.23713E+08 3.31822E+04 7.04046E+03 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

PLO 4.71807E+02 2.08699E+01 5.20531E+02 3.90076E-01 6.10458E+02 2.29444E+00 

PSO 4.75148E+02 3.28127E+01 5.20950E+02 4.26706E-02 6.21474E+02 3.65945E+00 

GSA 4.82612E+02 5.99102E+01 5.20941E+02 5.45715E-02 6.08846E+02 1.86002E+00 

HHO 5.42867E+02 5.29459E+01 5.20116E+02 1.31619E-01 6.28859E+02 4.16745E+00 

MFO 1.78948E+03 1.55333E+03 5.20324E+02 1.84935E-01 6.24206E+02 2.89791E+00 

ACOR 4.92806E+02 1.32385E+02 5.20924E+02 4.84442E-02 6.12291E+02 3.00215E+00 

MVO 1.24332E+03 9.53484E+02 5.20312E+02 1.71188E-01 6.23950E+02 4.24446E+00 

WOA 5.88925E+02 6.35832E+01 5.20371E+02 1.91303E-01 6.34901E+02 3.79290E+00 



SCA 1.46786E+03 2.71963E+02 5.20934E+02 6.37100E-02 6.33266E+02 2.68864E+00 

JAYA 1.08915E+03 1.14626E+02 5.20953E+02 4.88477E-02 6.30972E+02 2.50236E+00 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 

PLO 7.00025E+02 1.33663E-02 8.25417E+02 6.18392E+00 9.54546E+02 1.13514E+01 

PSO 7.02276E+02 1.61008E-01 9.71633E+02 2.42663E+01 1.10218E+03 3.05657E+01 

GSA 7.01198E+02 2.36638E-02 8.38505E+02 7.03766E+00 9.61488E+02 9.45307E+00 

HHO 7.01085E+02 1.72633E-02 8.82317E+02 1.04023E+01 1.08410E+03 2.25363E+01 

MFO 7.99782E+02 5.18679E+01 9.44094E+02 3.82491E+01 1.10882E+03 5.34486E+01 

ACOR 7.02957E+02 1.22532E+01 8.59972E+02 1.89139E+01 1.01221E+03 5.28648E+01 

MVO 8.03441E+02 6.64632E+01 9.53443E+02 3.81886E+01 1.11294E+03 4.00506E+01 

WOA 7.01035E+02 4.89553E-02 9.78445E+02 4.10009E+01 1.12637E+03 6.08373E+01 

SCA 8.47201E+02 2.35220E+01 1.03627E+03 1.74137E+01 1.17377E+03 1.67324E+01 

JAYA 7.11309E+02 2.19798E+00 1.00719E+03 1.97062E+01 1.14148E+03 1.52357E+01 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

PLO 1.77226E+03 3.20354E+02 3.92413E+03 5.77381E+02 1.20043E+03 2.15168E-01 

PSO 5.10613E+03 5.43633E+02 5.80319E+03 4.59626E+02 1.20239E+03 2.21750E-01 

GSA 2.33474E+03 2.03035E+02 2.92700E+03 2.92743E+02 1.20091E+03 1.26204E-01 

HHO 2.23361E+03 6.18729E+02 5.04692E+03 6.76686E+02 1.20153E+03 4.59830E-01 

MFO 4.67011E+03 8.93027E+02 5.08593E+03 7.91569E+02 1.20042E+03 1.63674E-01 

ACOR 3.21143E+03 6.14184E+02 4.21318E+03 1.87682E+03 1.20250E+03 2.89895E-01 

MVO 4.41163E+03 9.41803E+02 5.31152E+03 6.92313E+02 1.20042E+03 2.54887E-01 

WOA 4.98395E+03 9.06766E+02 6.03757E+03 8.93239E+02 1.20177E+03 4.56727E-01 

SCA 7.01130E+03 3.89290E+02 8.10652E+03 3.00569E+02 1.20251E+03 3.33964E-01 

JAYA 7.18260E+03 4.12594E+02 8.02355E+03 2.36123E+02 1.20252E+03 2.42585E-01 

 F13  F14  F15  

 AVG STD AVG STD AVG STD 

PLO 1.30031E+03 6.25260E-02 1.40023E+03 3.70858E-02 1.50545E+03 1.43031E+00 

PSO 1.30038E+03 8.09065E-02 1.40029E+03 1.18701E-01 1.51720E+03 1.08168E+00 

GSA 1.30017E+03 2.04549E-02 1.40035E+03 3.79031E-02 1.51305E+03 7.61710E-01 

HHO 1.30051E+03 1.16594E-01 1.40028E+03 1.20478E-01 1.53918E+03 8.19681E+00 

MFO 1.30183E+03 1.27103E+00 1.43275E+03 2.95546E+01 1.06919E+05 2.04480E+05 

ACOR 1.30050E+03 1.17547E-01 1.40082E+03 2.48416E-01 5.89052E+03 2.35774E+04 

MVO 1.30191E+03 1.14176E+00 1.43409E+03 2.85496E+01 2.43655E+05 3.72453E+05 

WOA 1.30053E+03 1.18320E-01 1.40027E+03 1.05468E-01 1.57656E+03 3.31120E+01 

SCA 1.30300E+03 3.33023E-01 1.44181E+03 5.56476E+00 4.16208E+03 2.49122E+03 

JAYA 1.30142E+03 3.59309E-01 1.40317E+03 2.89896E+00 1.53035E+03 3.94161E+00 

 F16  F17  F18  

 AVG STD AVG STD AVG STD 

PLO 1.61115E+03 4.62027E-01 1.47378E+05 7.43903E+04 7.15315E+03 4.89747E+03 

PSO 1.61209E+03 4.82499E-01 3.51099E+05 1.59469E+05 2.21697E+06 7.51169E+05 

GSA 1.61302E+03 3.35425E-01 2.83351E+05 2.37599E+05 7.53440E+04 2.50678E+04 

HHO 1.61230E+03 3.67731E-01 1.05122E+06 6.52895E+05 6.19645E+04 2.68552E+04 



MFO 1.61284E+03 6.99251E-01 4.07702E+06 8.16001E+06 7.57072E+07 2.25269E+08 

ACOR 1.61159E+03 4.16877E-01 2.17233E+05 4.41195E+05 1.05396E+04 8.55612E+03 

MVO 1.61262E+03 6.15450E-01 2.74360E+06 3.41646E+06 2.19665E+07 8.44954E+07 

WOA 1.61273E+03 3.57414E-01 4.30749E+06 3.15882E+06 2.59047E+04 6.92390E+04 

SCA 1.61273E+03 2.91449E-01 6.02334E+06 3.18895E+06 1.72113E+08 8.86854E+07 

JAYA 1.61275E+03 1.68697E-01 2.83678E+06 1.35349E+06 4.02139E+07 1.65813E+07 

 F19  F20  F21  

 AVG STD AVG STD AVG STD 

PLO 1.90611E+03 1.04663E+00 4.79181E+03 2.02594E+03 3.08905E+04 2.66474E+04 

PSO 1.91646E+03 2.40026E+00 2.35263E+03 9.46868E+01 1.14677E+05 6.93073E+04 

GSA 1.90746E+03 1.20844E+00 3.18685E+04 1.23045E+04 1.10166E+05 7.10347E+04 

HHO 1.92599E+03 2.95438E+01 6.68935E+03 2.54166E+03 3.14890E+05 2.22243E+05 

MFO 1.95749E+03 4.76411E+01 6.93570E+04 4.06528E+04 2.11333E+06 5.16761E+06 

ACOR 1.92106E+03 2.49926E+01 6.45998E+03 8.80111E+03 7.41971E+04 6.55863E+04 

MVO 1.96148E+03 4.61751E+01 5.84776E+04 3.12738E+04 9.47910E+05 1.72539E+06 

WOA 1.94323E+03 3.06546E+01 3.16471E+04 2.88149E+04 1.71420E+06 2.17102E+06 

SCA 1.99435E+03 2.29917E+01 1.77713E+04 3.93616E+03 1.32344E+06 6.89273E+05 

JAYA 1.92459E+03 2.60580E+00 5.20392E+03 1.93952E+03 6.19585E+05 2.33167E+05 

 F22  F23  F24  

 AVG STD AVG STD AVG STD 

PLO 2.34627E+03 6.97860E+01 2.61524E+03 2.02579E-04 2.62420E+03 8.13742E-01 

PSO 2.90447E+03 1.91434E+02 2.61600E+03 4.91742E-01 2.62750E+03 4.85209E+00 

GSA 3.06824E+03 2.67096E+02 2.61510E+03 5.77287E+00 2.60833E+03 4.78149E-01 

HHO 3.04304E+03 2.35024E+02 2.50000E+03 0 2.60000E+03 9.90250E-05 

MFO 3.05714E+03 2.39478E+02 2.67797E+03 6.11112E+01 2.67557E+03 3.83805E+01 

ACOR 2.57688E+03 2.35756E+02 2.61779E+03 7.95074E+00 2.64276E+03 7.14782E+00 

MVO 2.98332E+03 2.77576E+02 2.66783E+03 3.59803E+01 2.67524E+03 2.45758E+01 

WOA 3.02959E+03 2.09526E+02 2.63216E+03 1.05383E+01 2.60622E+03 3.78078E+00 

SCA 2.96537E+03 1.46290E+02 2.66890E+03 1.20485E+01 2.60006E+03 5.68196E-02 

JAYA 2.81769E+03 1.52449E+02 2.64140E+03 5.60837E+00 2.62220E+03 2.22317E+01 

 F25  F26  F27  

 AVG STD AVG STD AVG STD 

PLO 2.70430E+03 6.04237E-01 2.70030E+03 6.08050E-02 3.18228E+03 5.59585E+01 

PSO 2.71276E+03 6.94754E+00 2.77710E+03 4.30640E+01 3.44520E+03 2.92059E+02 

GSA 2.70192E+03 1.25516E-01 2.77433E+03 4.27648E+01 3.23268E+03 2.15286E+02 

HHO 2.70000E+03 0 2.77014E+03 4.63917E+01 2.90000E+03 0 

MFO 2.71515E+03 8.27838E+00 2.70228E+03 1.29613E+00 3.56876E+03 2.73005E+02 

ACOR 2.70780E+03 4.78638E+00 2.72456E+03 7.28413E+01 3.43275E+03 9.70817E+01 

MVO 2.71657E+03 9.29336E+00 2.70166E+03 1.03711E+00 3.58862E+03 2.55700E+02 

WOA 2.71843E+03 1.82197E+01 2.70045E+03 1.16569E-01 3.80732E+03 3.16691E+02 

SCA 2.72705E+03 8.97416E+00 2.70241E+03 6.79014E-01 3.42547E+03 3.12349E+02 

JAYA 2.71847E+03 4.86995E+00 2.70076E+03 1.02989E-01 3.42040E+03 2.26617E+02 

 F28  F29  F30  

 AVG STD AVG STD AVG STD 



PLO 3.63967E+03 3.36084E+01 5.62948E+03 8.02789E+02 5.02396E+03 4.02173E+02 

PSO 6.92616E+03 1.16049E+03 7.82418E+04 1.36791E+05 1.49820E+04 6.11889E+03 

GSA 4.75518E+03 4.94556E+02 3.59419E+07 5.59353E+07 7.88794E+03 1.04783E+03 

HHO 3.00000E+03 0 3.10000E+03 0 5.29478E+03 5.41021E+03 

MFO 3.97290E+03 2.30698E+02 2.32032E+06 3.48385E+06 5.77526E+04 5.65330E+04 

ACOR 3.87478E+03 1.95295E+02 2.97905E+06 4.33568E+06 9.83242E+03 7.81635E+03 

MVO 3.87714E+03 1.44785E+02 2.71869E+06 3.86312E+06 4.62740E+04 3.89747E+04 

WOA 4.95012E+03 4.72671E+02 7.05295E+06 4.37111E+06 8.24271E+04 5.40183E+04 

SCA 4.84274E+03 3.37062E+02 1.11467E+07 6.52644E+06 2.47814E+05 6.98566E+04 

JAYA 4.80474E+03 4.98293E+02 7.08109E+06 3.74381E+06 1.81546E+04 4.12412E+03 

Table 7. WSRT results and FT rankings for PLO and classical algorithmic competitions. 

Algorithm Mean Rank +/-/= 

PLO 1.87  1 ~ 

PSO 5.07  5 26/2/2 

GSA 4.13  3 20/7/3 

HHO 3.67  2 21/8/1 

MFO 7.40  9 28/1/1 

ACOR 4.40  4 22/0/8 

MVO 6.83  7 28/1/1 

WOA 6.30  6 27/2/1 

SCA 8.43  10 29/1/0 

JAYA 6.90  8 28/0/2 

In Table 6, PLO has the best AVG and STD in most functions, indicating that it finds a better optimal 

solution among many competitors and is more stable. Subsequently, in Table 7, the FT rankings of  all the 

participating algorithms are based on their combined performance in the 30 functions. In the column of  the 

"Mean" of  the combined rankings of  all functions, the PLO has an average of  1.87, indicating that it ranks 

relatively high in all individual functions and is finally ranked in 1st place. In addition, the "+/-/=" column 

metrics also indicate that PLO's results on most functions are superior to those of  its competitors. Thus, the 

comprehensive results show that PLO have better search capability, which is mainly attributed to the unique 

exploration and exploitation capabilities that PLO possess to better search for optimal solutions. 



 

Figure 9. Convergence curves of  the PLO with classical peers 

Subsequently, to further comprehend the PLO's specific performance when competing with other 

algorithms, we generate curves illustrating the optimization processes of  the competitors based on numerical 

values from experiments. In Figure 9, "Best Value" represents the optimal fitness value discovered by each 

algorithm during the iteration process. According to the PLO's curve, its major advantage, compared to other 

algorithms, lies in its sustained exploitation capability. The population update strategy, composed of  gyration 

motion and aurora oval walk, balances global exploration with local exploitation. Some algorithms like PSO, 

GSA, and ACOR enter the convergence phase early on, indicating that their search agents might swiftly 

explore promising regions. However, these regions might be in the vicinity of  local optima, causing the 

algorithms to converge to them. The distinctiveness of  PLO from other algorithms lies in its steady trend 

of  exploring the solution space early in the search process, constraining the step size in the initial stages and 

gradually exploring the global optimum as the search progresses based on accumulated experiences. 

Moreover, the particle collision strategy effectively addresses situations where the algorithm gets trapped in 

local areas. Therefore, in classical test sets, PLO, incorporating the three strategies, demonstrates a 

competitive advantage in achieving the optimal solution compared to other algorithms. 



5.2.2 Comparison with improved algorithms 

The competitiveness of  PLO is initially demonstrated by comparing it with 9 classical algorithms 

utilizing 30 function problems from IEEE CEC2014. In addition, continuous research efforts have spawned 

many enhanced versions of  the original algorithm, greatly improving its performance. As a result, these 

improved versions have become strong competitors. This section compares PLO with eight existing, 

enhanced algorithms to further demonstrate its superiority. Table 8 lists all the algorithms and parameter 

settings. The listed improved algorithms are all based on the original to improve the defects and increase 

performance. Therefore, it is worthwhile to compare PLO with 8 improved algorithms. The average value 

(AVG) and standard deviation (STD) of  each algorithm after 30 independent runs are listed in Table 9. 

Table 8. Algorithms and parameter settings. 

Algorithms Parameter(s) 

A-C parametric WOA (ACWOA) [68] 
𝑎1 = [2,0]; 

𝑎2 = [−2, −1]; 𝑏 = 1 

Double adaptive random spare reinforced whale optimization 

algorithm (RDWOA) [69] 

𝑠 = 0; 𝑎1 = [2,0]; 

𝑎2 = [−2, −1]; 𝑏 = 1 

Enhanced whale optimization algorithm (EWOA)[70] 𝑊𝑚𝑎𝑥 = 0.7; 𝑊𝑚𝑖𝑛 = 0.2 

Multi-population outpost mechanism enhanced Fruit fly 

optimizer (MOFOA) [71] 
𝑀 = 3 

Modified sine cosine algorithm (MSCA) [72] 𝑎 = 2; JR = 0.1 

The hybridization of  HHO and DE(HHODE) [73] 𝑘 = 0 

Novel random walk grey wolf  optimizer (RWGWO)[74] 𝑎 = [2 0] 

Boosted grey wolf  optimizer (OBLGWO) [75] 𝑎 = [2 0] 

Polar Lights Optimization (PLO) 𝑚 = 100;  𝑎 = [1,1.5] 

Table 9. Comparison results of  the PLO and 8 enhanced algorithms 

Function F1  F2  F3  

Algorithm AVG STD AVG STD AVG STD 

PLO 2.58888E+06 1.37254E+06 1.60022E+04 7.16515E+03 6.47824E+03 2.69953E+03 

RDWOA 9.00898E+06 5.28923E+06 2.00340E+07 2.70048E+07 6.47326E+03 4.18534E+03 

EWOA 4.06264E+06 3.21964E+06 1.24524E+04 1.11080E+04 5.66810E+03 3.53498E+03 

MOFOA 1.23247E+09 6.79276E+07 7.63319E+10 2.60493E+09 7.86242E+04 5.75286E+03 

MSCA 6.47601E+07 4.30416E+07 6.73724E+09 4.22215E+09 2.61552E+04 7.28091E+03 

ACWOA 1.32478E+08 5.98124E+07 7.62074E+09 3.77871E+09 4.70727E+04 1.07912E+04 

OBLGWO 1.87897E+07 9.62180E+06 1.26458E+07 8.04195E+06 9.31821E+03 3.30118E+03 

RWGWO 4.66299E+06 2.31297E+06 4.31865E+04 2.16373E+04 6.92678E+02 3.62708E+02 

HHODE 1.14056E+07 5.50907E+06 1.29535E+07 2.77570E+06 2.92326E+03 1.86966E+03 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

PLO 4.74061E+02 2.27437E+01 5.20561E+02 3.37363E-01 6.09731E+02 2.24606E+00 

RDWOA 5.45928E+02 4.29797E+01 5.20166E+02 1.80030E-01 6.24312E+02 3.07851E+00 

EWOA 5.19614E+02 3.75406E+01 5.20106E+02 9.47625E-02 6.22602E+02 4.16211E+00 

MOFOA 1.00269E+04 9.52576E+02 5.21041E+02 4.84214E-02 6.40862E+02 8.85176E-01 

MSCA 8.17669E+02 1.43110E+02 5.20620E+02 1.33670E-01 6.21197E+02 3.14095E+00 



ACWOA 1.21599E+03 2.86265E+02 5.20800E+02 2.18868E-01 6.33798E+02 2.60545E+00 

OBLGWO 5.50197E+02 4.05828E+01 5.20951E+02 5.83239E-02 6.18597E+02 3.53868E+00 

RWGWO 5.04711E+02 2.48334E+01 5.20455E+02 7.89524E-02 6.06751E+02 3.72543E+00 

HHODE 5.36043E+02 3.31342E+01 5.20379E+02 1.25569E-01 6.18815E+02 2.50021E+00 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 

PLO 7.00020E+02 7.35680E-03 8.24937E+02 6.69565E+00 9.60520E+02 1.21681E+01 

RDWOA 7.00870E+02 3.26513E-01 8.47610E+02 1.23758E+01 1.07602E+03 4.29832E+01 

EWOA 7.00056E+02 7.64890E-02 8.37036E+02 1.13575E+01 1.06597E+03 3.54986E+01 

MOFOA 1.40203E+03 4.63059E+01 1.17376E+03 1.39548E+01 1.26014E+03 6.12727E+00 

MSCA 7.48131E+02 2.72574E+01 9.41051E+02 2.46217E+01 1.05383E+03 2.50578E+01 

ACWOA 7.39354E+02 1.98148E+01 9.94044E+02 2.56494E+01 1.12966E+03 1.82469E+01 

OBLGWO 7.01175E+02 1.05930E-01 9.28162E+02 3.67700E+01 1.05457E+03 3.80579E+01 

RWGWO 7.00206E+02 1.70290E-01 8.37837E+02 6.95506E+00 9.57362E+02 1.30094E+01 

HHODE 7.01112E+02 2.60225E-02 8.85842E+02 1.94788E+01 1.03321E+03 3.37957E+01 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

PLO 1.90314E+03 3.28041E+02 3.78625E+03 5.07754E+02 1.20060E+03 2.76753E-01 

RDWOA 1.64316E+03 2.83566E+02 4.64524E+03 5.97713E+02 1.20052E+03 2.62386E-01 

EWOA 1.71205E+03 3.19032E+02 4.85535E+03 5.55956E+02 1.20037E+03 1.44304E-01 

MOFOA 9.20768E+03 4.36682E+02 9.02506E+03 2.12850E+02 1.20308E+03 2.94277E-01 

MSCA 4.37563E+03 5.52377E+02 4.93374E+03 9.02916E+02 1.20072E+03 3.53224E-01 

ACWOA 4.84635E+03 8.21653E+02 6.08422E+03 9.10747E+02 1.20170E+03 5.37723E-01 

OBLGWO 4.08182E+03 7.31952E+02 5.26152E+03 1.05074E+03 1.20243E+03 4.03388E-01 

RWGWO 2.00752E+03 2.84101E+02 3.62333E+03 3.59447E+02 1.20047E+03 1.43993E-01 

HHODE 2.37637E+03 5.86895E+02 4.53435E+03 1.01942E+03 1.20129E+03 5.11721E-01 

 F13  F14  F15  

 AVG STD AVG STD AVG STD 

PLO 1.30029E+03 6.28405E-02 1.40022E+03 3.58625E-02 1.50513E+03 1.36021E+00 

RDWOA 1.30042E+03 9.29129E-02 1.40024E+03 4.25697E-02 1.52242E+03 6.92987E+00 

EWOA 1.30053E+03 1.07148E-01 1.40032E+03 1.49723E-01 1.52019E+03 6.06033E+00 

MOFOA 1.30807E+03 2.91344E-01 1.63648E+03 1.12729E+01 2.29187E+05 2.99937E+04 

MSCA 1.30087E+03 6.17514E-01 1.41527E+03 1.00715E+01 2.35065E+03 1.41699E+03 

ACWOA 1.30153E+03 9.42553E-01 1.41405E+03 7.83670E+00 1.77465E+03 3.53956E+02 

OBLGWO 1.30052E+03 9.75390E-02 1.40036E+03 1.32506E-01 1.51632E+03 5.50589E+00 

RWGWO 1.30027E+03 5.91778E-02 1.40034E+03 1.60472E-01 1.50672E+03 2.02223E+00 

HHODE 1.30047E+03 1.31728E-01 1.40030E+03 1.15910E-01 1.52273E+03 1.07047E+01 

 F16  F17  F18  

 AVG STD AVG STD AVG STD 

PLO 1.61138E+03 4.18109E-01 1.37689E+05 1.07592E+05 7.41686E+03 6.07695E+03 

RDWOA 1.61149E+03 6.17319E-01 1.14829E+06 1.00200E+06 5.37050E+03 4.95124E+03 

EWOA 1.61164E+03 4.84462E-01 8.92898E+05 6.60515E+05 6.76060E+03 6.28557E+03 

MOFOA 1.61345E+03 2.39033E-01 9.03589E+07 2.24826E+07 5.90779E+09 7.72096E+08 

MSCA 1.61167E+03 5.10167E-01 1.49651E+06 1.52651E+06 2.84004E+07 4.72097E+07 



ACWOA 1.61213E+03 3.93641E-01 1.71702E+07 1.35279E+07 4.86749E+07 4.31102E+07 

OBLGWO 1.61207E+03 5.05751E-01 1.36272E+06 1.03422E+06 2.91097E+04 2.99895E+04 

RWGWO 1.61030E+03 7.59522E-01 4.02997E+05 2.88595E+05 4.78847E+03 3.38017E+03 

HHODE 1.61179E+03 4.49416E-01 1.28840E+06 9.12481E+05 5.89776E+03 5.27030E+03 

 F19  F20  F21  

 AVG STD AVG STD AVG STD 

PLO 1.90597E+03 8.84139E-01 3.90475E+03 1.63956E+03 2.93044E+04 1.51433E+04 

RDWOA 1.93048E+03 3.43452E+01 6.42805E+03 2.52514E+03 4.24150E+05 3.11509E+05 

EWOA 1.93148E+03 4.07490E+01 4.17354E+03 2.53285E+03 5.17404E+05 4.17397E+05 

MOFOA 2.23580E+03 1.17537E+01 1.74898E+05 8.31455E+04 3.55478E+07 1.08773E+07 

MSCA 1.94735E+03 2.22443E+01 1.16050E+04 4.12061E+03 4.01535E+05 3.51706E+05 

ACWOA 2.00938E+03 3.23774E+01 3.59644E+04 1.23469E+04 5.82263E+06 4.39701E+06 

OBLGWO 1.91246E+03 2.52098E+00 5.86769E+03 2.31491E+03 4.94282E+05 3.62913E+05 

RWGWO 1.90941E+03 1.37851E+00 2.25106E+03 6.99597E+01 1.75143E+05 1.79297E+05 

HHODE 1.92036E+03 1.96240E+01 5.66388E+03 2.60203E+03 3.21142E+05 3.15404E+05 

 F22  F23  F24  

 AVG STD AVG STD AVG STD 

PLO 2.32289E+03 5.30930E+01 2.61524E+03 9.19024E-05 2.62348E+03 1.74628E+00 

RDWOA 2.69868E+03 1.64819E+02 2.51179E+03 3.59691E+01 2.60000E+03 1.52847E-04 

EWOA 2.72148E+03 1.77466E+02 2.61541E+03 4.56766E-01 2.60616E+03 1.17224E+01 

MOFOA 1.88998E+04 1.03262E+04 2.50000E+03 0 2.60000E+03 0 

MSCA 2.60815E+03 1.44123E+02 2.63788E+03 8.94771E+00 2.60000E+03 5.92355E-04 

ACWOA 3.06437E+03 2.50681E+02 2.53413E+03 7.78892E+01 2.60000E+03 9.90233E-06 

OBLGWO 2.72758E+03 2.11202E+02 2.61774E+03 1.19805E+00 2.60099E+03 5.44973E+00 

RWGWO 2.46499E+03 1.27906E+02 2.61526E+03 6.22712E-03 2.60001E+03 2.78022E-03 

HHODE 2.66106E+03 1.43916E+02 2.50000E+03 0 2.60000E+03 2.99477E-04 

 F25  F26  F27  

 AVG STD AVG STD AVG STD 

PLO 2.70441E+03 7.50508E-01 2.70032E+03 7.27466E-02 3.18389E+03 3.85842E+01 

RDWOA 2.70000E+03 0 2.70106E+03 2.63843E+00 2.95318E+03 2.06260E+02 

EWOA 2.71345E+03 4.81043E+00 2.71049E+03 3.04128E+01 3.64167E+03 1.48862E+02 

MOFOA 2.70000E+03 0 2.78592E+03 3.20490E+01 2.90000E+03 0 

MSCA 2.71412E+03 3.56094E+00 2.70083E+03 2.62975E-01 3.16435E+03 1.19885E+02 

ACWOA 2.70000E+03 0 2.75039E+03 5.04639E+01 3.59702E+03 3.75158E+02 

OBLGWO 2.70000E+03 0 2.70055E+03 1.22076E-01 3.07799E+03 3.38456E+02 

RWGWO 2.70515E+03 1.14305E+00 2.74782E+03 5.97202E+01 3.17592E+03 8.53553E+01 

HHODE 2.70000E+03 0 2.70049E+03 1.35214E-01 2.90000E+03 0 

 F28  F29  F30  

 AVG STD AVG STD AVG STD 

PLO 3.63750E+03 2.96402E+01 5.67137E+03 7.83014E+02 5.03128E+03 5.14600E+02 

RDWOA 3.07709E+03 2.93445E+02 2.60507E+06 4.04255E+06 1.09039E+04 5.18296E+03 

EWOA 4.44018E+03 4.03578E+02 4.65796E+06 4.43013E+06 1.12920E+04 6.72554E+03 

MOFOA 3.00000E+03 0 3.10000E+03 0 3.20000E+03 0 

MSCA 3.92934E+03 1.24918E+02 1.13782E+06 3.07439E+06 5.15822E+04 2.67005E+04 



ACWOA 4.09153E+03 1.20821E+03 2.02662E+07 1.66326E+07 4.88251E+05 3.06028E+05 

OBLGWO 3.62837E+03 5.97363E+02 3.75535E+06 4.34368E+06 2.19586E+04 1.46415E+04 

RWGWO 3.70573E+03 9.98039E+01 5.78212E+05 2.16710E+06 7.20355E+03 1.26970E+03 

HHODE 3.00000E+03 0 1.09505E+06 3.36433E+06 1.65759E+04 2.06178E+04 

Table 10. WSRT results and FT rankings for PLO and enhanced algorithm competitions 

Algorithm Mean Rank +/-/= 

PLO 2.77  1 ~ 

RDWOA 3.97  4 17/7/6 

EWOA 4.70  5 21/4/5 

MOFOA 7.13  8 23/7/0 

MSCA 6.37  7 26/2/2 

ACWOA 7.33  9 27/3/0 

OBLGWO 5.53  6 26/2/2 

RWGWO 3.03  2 17/7/6 

HHODE 3.73  3 21/7/2 

As depicted in Table 9, PLO exhibits dominance in comparison to enhanced algorithms. This 

demonstrates that PLO possesses the stable ability to search for superior solutions when faced with 

competition from these algorithms. Furthermore, Table 10 presents the results of  a comparative analysis 

between PLO and the eight improved algorithms using WSRT and FT. By examining the "Mean" columns 

and the "+/-/=" columns, it becomes apparent that these enhanced algorithms possess enhanced search 

ability compared to the original algorithm. Nevertheless, PLO continues to secure the first rank, indicated 

by a "Mean" of  2.77, thereby substantiating its performance superiority over these enhancers. 



 

Figure 10. Convergence curves of  PLO and enhancers 

Figure 10 demonstrates that the enhanced algorithms exhibit a refined convergence process. Compared 

to the original algorithm, these enhanced algorithms effectively enhance convergence accuracy through 

improved exploration and exploitation capabilities. The graph shows that PLO continues to maintain its 

advantage, with gyration motion aiding in local exploitation and aurora oval walk facilitating step-wise 

refinement in global exploration, ultimately achieving higher accuracy in attaining the optimal solution. 

Hence, PLO successfully surpasses the enhanced algorithms, demonstrating its remarkable performance. 

5.2.3 Comparison and analysis based on the latest IEEE CEC2022  

In the previous subsection, the success of  PLO's comparison experiments in IEEE CEC2014 shows 

that PLO is highly adaptable and optimizable to the classical set of  benchmark functions. The IEEE 

CEC2022 benchmark function set makes improvements in accuracy, comprehensiveness, and diversity and 

is more accurate and challenging compared to the former; the performance of  different optimization 

algorithms can be better evaluated and compared. Therefore, this study compares PLO with nine algorithms 

utilizing 12 functions from IEEE CEC2022, including five classical algorithms as well as four improved 

algorithms, and Table 11 lists the competitors and their parameter settings. In this experiment, the difference 

from the previous subsections is that the setting is 20 dimensions (the default value) due to the dimensionality 



limitation of  the test function, along with 200,000 fitness evaluations (FEs) of  each algorithm. 

Table 11. Algorithms and parameter settings. 

Algorithms Parameters 

Gravitational search algorithm (GSA) [24] 𝑅𝑛𝑜𝑟𝑚 = 2 

Harris Hawk optimizer (HHO) [32] 𝑘 = 0 

The hybridization of  HHO and DE(HHODE) [73] 𝑘 = 0 

Particle swarm optimizer (PSO) [63] 𝑐1 = 2; 𝑐2 = 2; 𝑉𝑚𝑎𝑥 = 6 

Whale optimization algorithm (WOA) [65] 𝑎1 = [2,0]; 𝑎2 = [−2, −1]; 𝑏 = 1 

Double adaptive random spare reinforced whale 

optimization algorithm (RDWOA) [69] 

𝑠 = 0; 𝑎1 = [2,0]; 

𝑎2 = [−2, −1]; 𝑏 = 1 

Enhanced whale optimization algorithm (EWOA) [70] 𝑊𝑚𝑎𝑥 = 0.7; 𝑊𝑚𝑖𝑛 = 0.2 

Moth-flame optimization algorithm (MFO) [64] 𝑏 = 1 

Comprehensive learning Jaya algorithm(CLJAYA) [76] ~ 

Polar Lights Optimization (PLO) 𝑚 = 100, 𝑎 = [1,1.5] 

Table 12. Comparison results of  PLO and peers in IEEE CEC2022 

Function F1  F2  F3  

Algorithm AVG STD AVG STD AVG STD 

PLO 2.8025E+03 8.7755E+02 4.2984E+02 1.7513E+01 6.0003E+02 5.2462E-03 

PSO 3.7239E+02 1.3269E+01 4.3497E+02 2.6235E+01 6.4321E+02 1.3361E+01 

GSA 2.8341E+04 5.9535E+03 4.5713E+02 1.4349E+01 6.0150E+02 6.4317E-01 

HHO 3.0876E+02 3.0949E+00 4.5177E+02 2.1142E+01 6.4922E+02 8.1762E+00 

MFO 3.2221E+04 2.5442E+04 5.2829E+02 1.0937E+02 6.2331E+02 1.0432E+01 

WOA 3.6525E+03 3.2479E+03 4.9471E+02 4.2330E+01 6.6359E+02 1.3470E+01 

RDWOA 1.4302E+03 1.1354E+03 4.6529E+02 2.8458E+01 6.0166E+02 1.6313E+00 

HHODE 3.8104E+02 6.2600E+01 4.6228E+02 1.1842E+01 6.1576E+02 7.1073E+00 

EWOA 3.3751E+02 2.5027E+01 4.5891E+02 1.2724E+01 6.1070E+02 8.7615E+00 

CLJAYA 3.0000E+02 1.1725E-09 4.3787E+02 1.9851E+01 6.0025E+02 5.2729E-01 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

PLO 8.3831E+02 1.0980E+01 9.0845E+02 6.8652E+00 9.3410E+03 6.9851E+03 

PSO 8.9395E+02 1.9548E+01 1.6146E+03 9.0429E+02 1.3449E+06 3.3342E+05 

GSA 8.5772E+02 9.7625E+00 9.0249E+02 3.7211E-01 1.7420E+05 5.7650E+04 

HHO 8.8326E+02 1.7302E+01 2.4894E+03 2.3097E+02 5.8520E+04 3.2964E+04 

MFO 9.0427E+02 2.4685E+01 2.9222E+03 9.2013E+02 1.0604E+07 1.5511E+07 

WOA 9.1443E+02 3.4836E+01 3.5780E+03 1.3935E+03 1.4146E+04 2.3211E+04 

RDWOA 9.1546E+02 3.5017E+01 2.4617E+03 5.6110E+02 8.5933E+03 6.8561E+03 

HHODE 8.6155E+02 2.2986E+01 1.5985E+03 4.0551E+02 4.2818E+03 3.3157E+03 

EWOA 8.8640E+02 3.2501E+01 2.0384E+03 5.8491E+02 7.9893E+03 6.4194E+03 

CLJAYA 8.7942E+02 1.6901E+01 9.0675E+02 9.0369E+00 8.7790E+03 7.3969E+03 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 

PLO 2.0317E+03 6.9219E+00 2.2251E+03 1.3537E+00 2.4808E+03 3.2679E-03 

PSO 2.1336E+03 5.3138E+01 2.3183E+03 8.7876E+01 2.4658E+03 1.1410E-01 

GSA 2.2386E+03 9.3274E+01 2.3289E+03 6.9004E+01 2.4864E+03 5.4579E-01 



HHO 2.1538E+03 4.2211E+01 2.2474E+03 3.3092E+01 2.4838E+03 1.7135E+00 

MFO 2.1169E+03 3.3698E+01 2.2617E+03 5.3296E+01 2.4990E+03 1.8949E+01 

WOA 2.1915E+03 6.3906E+01 2.2509E+03 3.0478E+01 2.4967E+03 1.8223E+01 

RDWOA 2.0824E+03 5.0892E+01 2.2292E+03 2.2118E+01 2.4811E+03 6.9223E-01 

HHODE 2.0834E+03 2.9810E+01 2.2297E+03 8.5891E+00 2.4844E+03 3.6474E+00 

EWOA 2.0866E+03 4.3626E+01 2.2308E+03 2.6025E+01 2.4809E+03 1.2385E-01 

CLJAYA 2.0429E+03 2.3608E+01 2.2319E+03 4.3762E+00 2.4808E+03 1.2610E-12 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

PLO 2.5004E+03 6.8985E-02 2.6001E+03 2.2371E-02 2.8598E+03 1.2322E+00 

PSO 4.2156E+03 1.0723E+03 2.7008E+03 1.5950E+02 2.8541E+03 1.6468E+01 

GSA 2.8448E+03 3.8265E+02 2.8309E+03 1.5133E+02 2.8794E+03 1.6767E+01 

HHO 3.0675E+03 5.4938E+02 2.7853E+03 1.3997E+02 2.8872E+03 3.2423E+01 

MFO 3.7391E+03 1.0153E+03 2.8188E+03 1.5086E+02 2.8648E+03 4.4151E+00 

WOA 4.5073E+03 1.0058E+03 2.7831E+03 1.4491E+02 2.8815E+03 2.9317E+01 

RDWOA 2.6008E+03 1.1062E+02 2.8853E+03 2.0788E+02 2.8689E+03 1.0270E+01 

HHODE 2.5299E+03 8.0654E+01 2.6631E+03 7.2919E+01 2.8639E+03 1.6712E+00 

EWOA 2.9545E+03 3.8171E+02 2.7767E+03 1.4438E+02 2.8652E+03 3.8596E+00 

CLJAYA 2.8599E+03 6.9902E+02 2.6985E+03 1.3808E+02 2.8668E+03 7.5038E+00 

Table 13. WSRT results and FT rankings for PLO and competitor comparisons at IEEE CEC2022 

Algorithm Mean Rank +/-/= 

PLO 2.25  1 ~ 

PSO 5.50  5 8/3/1 

GSA 6.42  7 11/1/0 

HHO 6.58  8 11/1/0 

MFO 8.17  9 12/0/0 

WOA 8.50  10 10/0/2 

RDWOA 5.67  6 9/1/2 

HHODE 3.92  3 10/2/0 

EWOA 4.75  4 9/1/2 

CLJAYA 3.25  2 6/2/4 

In Table 12, PLO’s performance in the latest test set manages to show excellent exploration results, 

which shows that the algorithm can adapt to new problems while being very stable. The IEEE CEC2022 

benchmark function set places higher demands on the accuracy and stability of  algorithmic exploration. In 

Table 13, PLO stands out with its advantages and tops the list with an " Mean" value of  2.25. In addition, 

PLO outperforms peers in most of  the functions in the "+/-/=" column. These findings demonstrate that 

PLO exhibits superior fitness and exploration results compared to other algorithms in the latest test set. 



 

Figure 11. Convergence curves of  the PLO and competitors in the IEEE CEC2022 

Figure 11 showcases the exploration process of  the optimal solution by PLO and its competitors using 

the most recent test set. PLO demonstrates a recognizable inclination to escape the confines of  local optimal 

during the later stages of  local exploitation in F4, F7, and F11, culminating in attaining the highest 

convergence accuracy. Conversely, PLO efficiently identifies a superior solution during the initial search 

phase of  the algorithm in F2, F10, and F11, subsequently advancing continuously from this foundation. 

Consequently, PLO effectively optimizes the entire solution process in terms of  both accuracy and speed, 

thereby substantiating its superior performance in handling intricate problems. Consequently, PLO emerges 

as a highly potent meta-heuristic algorithm capable of  upholding remarkable levels of  accuracy and efficiency 

when confronted with these latest challenges. 

5.2.4 Comparison with state-of-the-art algorithms on the latest IEEE CEC2022 

In this section, we compare and analyze our proposed PLO with the current state-of-the-art methods 

in the field utilizing 12 functions from IEEE CEC2022. This comparison serves two purposes: firstly, to 

further evaluate the effectiveness of  our method and gather insights for potential improvements; secondly, 

by engaging in this process, we aim not only to validate our contribution but also to gain a comprehensive 

understanding of  the landscape within which our work operates in the current field. Therefore, this study 

will compare the PLO with three state-of-the-art algorithms, including LSHADE [64], EBOwithCMAR [65] 

and RUN [27], which are currently the most widely recognized advanced methods. Table 14 lists their 

parameter settings. The dimensionality is set to 20 dimensions (default), and the fitness evaluations (FEs) for 

each algorithm are set to 200,000 iterations. 

Table 14. Algorithms and parameter settings. 

Algorithms Parameter(s) 

Polar Lights Optimization (PLO) 𝑚 = 100;  𝑎 = [1,1.5] 



LSHADE[77] 𝑝 = 0.11, 𝑟𝑎𝑟𝑐 = 1.4, 𝑁𝑚𝑖𝑛 = 4, 𝑀𝑠𝑖𝑧𝑒 = 5 

EBOwithCMAR[78] 

𝑃𝑆1𝑚𝑎𝑥 = 18𝐷; 𝑃𝑆1𝑚𝑖𝑛 = 4; 

𝑃𝑆2𝑚𝑎𝑥 = 46.8𝐷; 𝑃𝑆2𝑚𝑖𝑛 = 10;  𝐻 = 6; 

𝑃𝑆3 = 4 + (3 log(𝐷)); 𝜎 = 0.3; 𝑝𝑟𝑜𝑏𝑙𝑠 = 0.1; 

𝑐𝑓𝑒𝑙𝑠 = 0.25𝑀𝑎𝑥𝐹𝐸𝑠 

RUN [37] 𝑎 = 20; 𝑏 = 12 

 

 

Figure 12. Boxplots of  PLO and excellent algorithms. 

In this section, the PLO is compared with advanced algorithms on 12 functions, and boxplots are 

generated from 30 independent runs to provide a visual analysis of  the results. As depicted in the Figure 12, 

the PLO demonstrates encouraging outcomes, achieving optimal solutions or satisfactory approximations in 



most functions. Furthermore, the morphology of  the box plots and whisker plots indicates that the results 

from 30 independent runs of  the PLO are distributed within a smaller range, demonstrating the stability of  

its solving process. Lastly, observing the presence of  outliers shows that the PLO is more likely to produce 

consistent and reliable results compared to other methods. Table 15 presents the ranking results of  this 

comparison, with PLO securing the first rank overall, indicating its superiority over the current state-of-the-

art methods. 

Table 15. WSRT results and FT rankings for PLO and competitor comparisons 

Algorithm Mean Rank +/-/= 

PLO 2 1 ~ 

LSHADE 2.25 2 3/5/4 

EBOwithCMAR 2.25 2 3/5/4 

RUN 3.5 4 9/1/2 

Figure 13 illustrates the convergence process of  PLO and competitors. Here, it can be observed that 

LSHADE and EBOwithCMAR exhibit competitive advantages by swiftly narrowing down to local regions 

containing the global optimum in the early stages of  convergence and focusing on developing optimal 

solutions within them. In contrast, PLO concentrates on consolidating the convergence process by 

integrating the knowledge acquired thus far and progressively exploring. Consequently, PLO effectively 

optimizes the accuracy of  the entire process, thereby demonstrating its outstanding performance in tackling 

complex problems. 

 

Figure 13. Convergence curves of  PLO and state-of-the-art methods.  

5.3 Qualitative analysis experiment 

Since only models and theories are elaborated, it does not provide a clear understanding of  the 

searching process for the most solutions to the proposed method. Therefore, this subsection presents the 

abstract algorithmic solution process in graphs, etc., enabling a more intuitive understanding of  the 



algorithm's workings and internal mechanisms. Then, the scalability of  the PLO to large-scale problems is 

analyzed. 

5.3.1 Optimization process analysis 

This subsection describes an experiment that reflects the historical trajectory of  an agent's position by 

recording the best position for each iteration. In addition, this paper investigates the updates performed on 

the agent and analyzes the particles inside the agent, particularly the agent's transversal dimension vector. 

This analysis aims to reveal the mode and extent of  particle variations. In this subsection, a particle change 

experiment is designed to record the optimal agent for a particle's position in each round of  iteration. In 

addition, a devised experiment on the alteration of  fitness value is conducted to record the fitness value after 

each iteration. The experiment meticulously marked down the ultimate fitness value after every update. 

Finally, we set up iterative curve experiments to reflect the overall trend of  PLO. 



 

Figure 14. The 3D image of  benchmark functions and PLO's solution distribution 



 



Figure 15. Qualitative analysis experiment of  PLO 

The results of  PLO for the above experiments are shown in Figure 14 and Figure 15. In Figure 14, the 

three-dimensional stereo images of  all the solutions of  each benchmark function, which can help to better 

understand and observe the distribution of  the solution space, are followed by the distribution of  the record 

points of  PLO's historical search for the optimal solution in the two-dimensional plane of  the solution space. 

After observation, it is not difficult to find that a minority of  historical optimal solutions are scattered within 

the solution space, whereas the majority of  historical optimal solutions congregate around the global 

optimum. This suggests that PLO exhibits a stable trend of  early exploration of  the solution space during 

the search process, initializing computational strides in the initial stages, and progressively exploring toward 

the optimal value based on accumulated experience throughout the search process. 

In Figure 15, column (a) shows the trend of  a dimension component of  the PLO's agent. PLO has a 

large search step due to the combined effect of  gyration motion and auroral oval walk, allowing it to perform 

a global search. In later iterations, the particle collision strategy gradually plays an important role, helping the 

algorithm escape local optima. As the iteration proceeds, the oscillation amplitude of  the agent's dimension 

decreases, and the algorithm gradually transitions to the exploitation stage to finely converge to the optimal 

solution. 

The average fitness value, calculated by all agents after every iteration of  PLO, is recorded in column 

(b). It is apparent that the search agents consistently adapt positions during the updating process, and the 

fitness values in each iteration align with the fluctuations of  the agents, ultimately converging to one point. 

This observation highlights that the search pattern employed by PLO drives the agents to update their 

locations continuously and progressively explore until they reach the optimal solution, aligning with the 

algorithm's intended design. 

Column (c) also shows PLO’s iterative convergence curve. For MAs, the algorithm's performance is 

more intuitive to the researcher during the successive solving process, meaning the quality of  the explored 

solution increases with the number of  iterations until the optimal or near-optimal solution is found when 

the iteration stops. Throughout this process, the algorithm needs to refine its search increasingly and avoid 

falling into local optima. In all aspects, PLO fits the above description, effectively searching for high-quality 

solutions, maintaining sensitivity to local optima, and quickly escaping them. 

In conclusion, the architecture of  PLO demonstrates conformity with the principles underlying MAs. 

It possesses the ability to perform a continual search for an optimal solution with a primary focus on 

exploring and enhancing accuracy. Moreover, while guaranteeing convergence, PLO actively modifies its 

search strategy during the update process, thus eliminating the restrictions imposed by local optimality. 

Throughout the search for an optimal solution, PLO incorporates a weighting mechanism to better 

coordinate global search with local exploitation, resulting in a seamless and uninterrupted transition from 

extensive exploration to precise exploitation. Consequently, the quest for an optimal solution through the 

PLO encompasses both breadth and depth. 

5.3.2 The scalability test for PLO 

The stability and scalability of  a method can be significantly influenced by its components and 

dimensions. Understanding how these factors interact is crucial, especially when augmenting its [79]. Thus, 

it's imperative to investigate. To do so, under identical conditions, we set the function dimensions to 50 and 

100, utilizing 30 function problems from IEEE CEC2014, and conduct comparative tests between the PLO 

and classical algorithms.  



 

Figure 16. Scalability test results in 50 dimensions 



 

Figure 17. Scalability test results in 100 dimensions 

In this section, we compare the PLO with classical algorithms across 30 functions, generating box plots 

from 30 independent runs to facilitate intuitive analysis of  the results. The corresponding experimental 

results are depicted in Figure 16 and Figure 17. According to the experimental findings, the PLO continues 

to demonstrate promising results at 50 dimensions, and it maintains stable performance even at 100 

dimensions. In other words, regardless of  the complexity of  the functions, the PLO exhibits a commendable 

ability to find optimal solutions across most functions. Furthermore, based on the results of  the WSRT 

presented in Table 16 and Table 17, it is evident that the PLO maintains its advantage in terms of  both 

capability and stability in finding optimal solutions compared to classical algorithms. 

As per our observations, we find that PLO exhibits better performance and considerable stability across 

varying levels of  complexity. Throughout the problem-solving process, PLO demonstrates a heightened 

ability to avoid local optima, aiding in the discovery of  superior solutions for the given functions. In 

conclusion, the proposed PLO showcases enhanced problem-solving capabilities and significant advantages, 

making it more likely to achieve satisfactory results when extended to large-scale problem domains.  

Table 16. Scalability test results at 50 dimensions. 

Algorithm Mean Rank +/-/= 

PLO  2.17  1 ~ 

PSO  5.60  6 22/3/5 

GSA  4.33  4 16/8/6 



HHO  4.13  3 21/9/0 

MFO  7.87  9 30/0/0 

ACOR  5.27  5 22/1/7 

MVO  3.00  2 15/7/8 

WOA  6.63  7 28/1/1 

SCA  8.60  10 29/1/0 

JAYA  7.40  8 28/1/1 

Table 17. Scalability test results at 100 dimensions. 

Algorithm Mean Rank +/-/= 

PLO  2.13  1 ~ 

PSO  5.60  6 21/3/6 

GSA  4.23  4 17/6/7 

HHO  4.13  3 20/9/1 

MFO  8.07  9 30/0/0 

ACOR  5.30  5 24/0/6 

MVO  3.20  2 18/5/7 

WOA  6.70  7 29/1/0 

SCA  8.53  10 29/1/0 

JAYA  7.10  8 28/1/1 

6. Application of the PLO: MTIS and FS 

In this section, our research delves into two pivotal challenges: multi-threshold segmentation (MTIS) 

of  breast cancer pathology images and feature selection (FS) for medical datasets. 

In the domain of  MTIS, the conventional approach to breast cancer analysis and diagnosis, rooted in 

radiology or pathology expertise, is fraught with the intricacies of  interpreting pathological images of  breast 

cancer, laden with copious amounts of  intricate and often redundant information, thereby resulting in human 

error. The conventional radiological diagnosis is inherently constrained and heavily reliant on the subjective 

interpretation and experiential knowledge of  medical practitioners [80]. Hence, the imperative arises to 

segment breast cancer pathological images, eliminating superfluous data, to lay a robust foundation for 

subsequent pathological analysis, comprehension, and diagnosis. However, traditional segmentation 

methodologies predominantly focus on grayscale information, disregarding the influence of  pixel spatial 

context on segmentation outcomes, and fail to reconcile the optimal segmentation thresholds across image 

channels, rendering them incapable of  effecting a more rational image segmentation [81]. This study 

proposes a multi-threshold segmentation method based on metaheuristic algorithms and Kapur entropy to 

address this challenge. This method optimizes the segmentation thresholds of  breast cancer images based 

on pixel intensity and spatial neighborhood two-dimensional histograms, thereby enhancing the precision of  

lesion area segmentation. 

In the realm of  FS, it entails the process of  choosing a subset of  relevant features from a given feature 

set. The objective of  FS is to alleviate the complexity of  learning tasks by eliminating irrelevant and 

redundant features, thereby conserving computational and storage costs, and mitigating the risk of  overfitting. 

However, the majority of  feature extraction models based on feature fusion struggle to effectively adapt to 

the extraction of  medical features in high-dimensional and voluminous datasets. Managing large feature 



spaces presents challenges, yet the binary variant of  MAs offers a solution by effectively exploring the search 

space to identify the optimal feature subset [82]. Consequently, this paper introduces a binary variant of  PLO 

(bPLO) specifically tailored for feature selection, thereby optimizing Kernel Extreme Learning Machine 

(KELM) to enhance classification accuracy. 

When faced with real-world interference factors, such as redundant noise in images or noisy, incomplete 

datasets, the exploration task undertaken by PLO may become notably more challenging. Data noise can lead 

to the algorithm failing to accurately assess the search space, thereby selecting suboptimal solutions instead 

of  the global optimum. Additionally, data incompleteness increases uncertainty, potentially necessitating 

more iterations for convergence, consequently augmenting algorithm runtime and resource consumption, 

and affecting the final solution accuracy. In essence, real-world interference factors pose obstacles to the 

optimization task of  PLO, putting its ability to explore the search space to the test. 

This section is organized as follows: Section 6.1 will present the designed multi-threshold image 

segmentation method and feature selection model. Section 6.2 will show the testing of  the MTIS method at 

different threshold levels, which includes the comparison of  several similar algorithms to evaluate the efficacy 

of  PLO. Section 6.3 demonstrates the performance of  the proposed FS method. This subsection tests the 

PLO algorithm against some well-known algorithms on different datasets and compares the results. 

6.1 Integration of  related technologies with the PLO 

6.1.1 Multi-threshold image segmentation 

Multi-threshold image segmentation (MTIS) is an image processing technique designed to partition 

images into different regions, with every region delineated by several thresholds. In contrast to conventional 

methods, MTIS demonstrates superior efficacy in managing images containing multiple objects or 

showcasing non-uniform color or brightness variations. At its core, MTIS operates by assessing pixel 

intensity values within the image against a predefined set of  thresholds, thereby allocating pixels into distinct 

regions based on this comparison. These methods often have lower computational complexity, making them 

advantageous for real-time processing and low-power devices. The simplicity and versatility of  this approach 

render it suitable for various types of  images. However, conventional threshold segmentation methods often 

fail to effectively leverage inherent spatial positional information within images [80, 83, 84]. In cases where 

objects occupy a relatively small portion of  the image, this method can lead to noticeable segmentation errors, 

making the results susceptible to noise interference. To address this, Abutaleba [85] proposed a segmentation 

method based on a two-dimensional histogram. This approach integrates the original grayscale histogram 

with pixel local averages, resulting in a non-local mean two-dimensional (2D) histogram. This integration 

significantly reduces such segmentation errors, substantially enhancing segmentation quality, albeit at the cost 

of  additional computational burden. 

While the segmentation method based on a 2D histogram proves effective, it also comes with limitations. 

These techniques necessitate extensive threshold optimization computations, potentially incurring 

substantial computational costs and still possibly overlooking certain image details [86]. To address such 

challenges, we devise a MTIS method that integrates non-local mean filtering, 2D histograms, Kapur's 

entropy, and PLO.  

In the designed MTIS system, there are four primary components introduced: non-local mean filtering, 

a denoising technique, that filters each pixel by considering the pixel values in its surrounding area, producing 



a denoised image, and synthesizing a 2D histogram. Its role is to reduce image noise, ensuring subsequent 

segmentation steps are stable and accurate. The 2D histogram, a graphical representation illustrating the 

correlation between two variables, elucidates the associations among various grayscale levels present in the 

image, thereby assisting in identifying multiple threshold divisions. Kapur's entropy measures image 

information and assists in choosing optimal thresholds, maximizing the image's entropy after segmentation. 

In the MTIS, Kapur's entropy serves as the objective function optimized through MAs, determining the best 

combinations of  multiple thresholds. To get a clear overview of  the MTIS system, we give the flowchart as 

shown in Figure 18. 

 

Figure 18. The flowchart of  MTIS modeling 

Figure 18, this method follows a specific sequence of  steps: initially, the input image (sourced from the 

Invasive Ductal Carcinoma (IDC) dataset [55]) is transformed into grayscale, creating a grayscale image, 

which is then subjected to non-local mean filtering to reduce noise, ensuring subsequent processes' stability. 

The grayscale image and the output from non-local mean filtering are used to construct a 2D histogram. 

Kapur's entropy serves as the evaluation metric, which calculates the entropy for each threshold combination. 

The objective here is to maximize Kapur's entropy, meaning selecting threshold combinations that maximize 

the entropy of  the segmented image, thus maximizing information content. MAs are employed to optimize 

the computation of  Kapur's entropy. This optimization process involves searching the multi-dimensional 

parameter space to find the optimal threshold combination that maximizes the entropy. Finally, the identified 

optimal threshold set is utilized to segment the image, producing the completed segmented image. 



6.1.2 Feature selection 

Feature Selection (FS) represents a pivotal phase in model construction, encompassing the process of  

filtering and selecting pertinent features from datasets. Its primary aim is to augment model training, mitigate 

overfitting, and enhance generalization capabilities. FS has demonstrated advantageous outcomes across 

diverse medical domains, particularly within medical datasets, which frequently exhibit high dimensions. In 

the realm of  Machine Learning (ML), three prevalent FS techniques are employed: filtering, wrapping, and 

embedding methods. Coping with extensive feature spaces poses challenges, yet binary variant of  MA 

provides solutions by adeptly traversing search spaces to pinpoint optimal feature subsets. Integrating MAs 

into FS serves to elevate model accuracy and performance. 

Within the realm of  FS, methodologies encompass selecting pertinent features, assessing subsets via 

diverse measurement techniques, identifying various subsets, and validating features [87]. While wrapping 

methods yield more refined results, they entail longer completion times compared to filtering methods [88]. 

A harmonious blend of  both methodologies strikes a balance, guaranteeing precise outcomes while curtailing 

filtering durations. The fitness function of  MAs gauges the efficacy of  each feature set, constituting a pivotal 

facet for FS and machine learning algorithms. Researchers concentrate on fortifying these systems, 

harnessing MAs to augment classification accuracy and streamline search spaces [82]. 

The PLO algorithm, integrated with the Kernel Extreme Learning Machine (KELM), is proposed for 

feature selection purposes. Leveraging the binary variant of  PLO (bPLO), the algorithm extracts the optimal 

feature subset from the dataset, subsequently utilized for feature selection. These selected subsets serve as 

input parameters for KELM, culminating in deriving final classification results. However, it is crucial to 

reevaluate how the fitness function is set when combining bPLO with the KELM classifier. The data 

preprocessing procedure has two primary requirements. Firstly, the obtained feature subset should exhibit 

high classification accuracy; in other words, it needs to encompass features strongly correlated with the 

classes. Secondly, the derived feature subset should contain as few features as possible to mitigate interference 

caused by high dimensionality. The generated solutions need continuous evaluation during the iterative 

process to ensure its effectiveness. This is achieved through the fitness function of  the classifier, as 

demonstrated in Eq. (42). 

𝑓𝑖𝑡 = 𝛼 × 𝑒𝑟𝑟𝑜𝑟 + 𝛽 ×
|𝑅|

|𝐷|
  (42) 

where 𝛼 denotes the weight for assessing the classification error rate, and the 𝑒𝑟𝑟𝑜𝑟 is the error rate; 𝛽 

is the number of  selected features, |𝑅| represents the final subset attributes number, and |𝐷| is the dataset 

dimension, i.e., the entire subset attributes number. In this work, the value of  𝛼 is set to 0.99 and the value 

of  𝛽 is set to 0.01 as in many previous studies. 



 

Figure 19. Flowchart of  feature selection  

To gain a comprehensive understanding of  this process, a detailed flowchart is provided, as in Figure 

19. Firstly, the dataset undergoes preprocessing, being normalized to the range of  [-1,1], and samples are 

partitioned using a 10-fold cross-validation approach. Subsequently, bPLO is initialized, and based on the 

fitness function Eq. (42), the fitness of  each feature subset is computed. The feature subset with the lowest 

fitness value is chosen as the optimal solution. These optimal feature subsets are then returned and serve as 

initial parameters for the KELM model, which is employed to find the ultimate classification solution. Finally, 

the KELM model is utilized to predict the filtered test set using the best-selected feature subsets. 

6.2 Segmentation experiments on breast cancer pathology 

images 

This section employs ten breast cancer pathology images as the target images for segmentation. These 

datasets provide histopathological microscope images, derived from breast tissues stained with H&E. Figure 

20 displays the original images of  these selected pictures along with their non-local mean 2D histograms. 

Our objective is to examine whether PLO's segmentation performance remained excellent when confronted 

with diverse images, as each image is treated as a separate issue associated with the threshold levels used for 

segmentation [89]. To comprehensively assess the PLO, this paper conducts two sets of  experiments at both 

low and high threshold levels, and the segmentation results will be compared with seven other algorithms. 

All participants are outlined in the Table 18.  

Table 18. Participants and parameter settings. 

Participants Parameters 

Polar lights optimization (PLO) 𝑚 = 100;  𝛼 = [1,1.5] 

Whale optimization algorithm (WOA) [65] 𝑎1 = [2,0]; 𝑎2 = [−2, −1]; 𝑏 = 1 

JAYA algorithm (JAYA) [67] ~ 

Slime mould algorithm (SMA) [31] 𝑧 = 0.03 

Multi-verse optimizer (MVO) [20] 𝑀𝑎𝑥𝑊𝐸𝑃 = 1;  𝑀𝑖𝑛𝑊𝐸𝑃 = 0.2 



Multi-strategy enhanced sine cosine algorithm (MSCA) [90] 𝑎 = 2;  JR = 0.1 

Harris Hawks optimization (HHO) [32] 𝑘 = 0 

Enhanced grey wolf  optimization (IGWO) [91] 𝛽 = 10;  𝜔 = 15 

In the experiment, we utilized Peak Signal-to-Noise Ratio (PSNR) [92], Structural Similarity Index 

(SSIM) [93], and Feature Similarity Index (FSIM) [94] as evaluation metrics. We presented the metrics' means 

and variances and performed statistical analysis using WSRT and FT to examine the results. Furthermore, 

all algorithms compared are subjected to identical experimental conditions. The evaluation is conducted over 

2000 times, with image dimensions set at 512x512, a solution space size of  30, and each algorithm 

independently run 30 times. 

 

Figure 20. Segmented samples with 2D histograms 



6.2.1 Experimental at low threshold levels 

In this section, the low-threshold groups are categorized into 2, 4, and 6 threshold levels. PLO, along 

with the seven algorithms, segments the ten selected images. In Appendix Tables A.3 to A.5, we report the 

averages and standard deviations of  the three metrics after segmentation using PLO and the other seven 

algorithms. PLO achieves the highest average and the smallest standard deviation in most images, indicating 

its superior overall performance in segmentation with consistent and stable results. Additionally, Tables 19, 

20, and 21 display the statistical results of  these three metrics using WSRT and FT. The statistical analysis 

demonstrates that the proposed PLO algorithm outperforms other algorithms in low threshold image 

segmentation. 

Table 19. The FSIM results at 2, 4 and 6 threshold level 

Thresholds 2 4  6  

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

PLO 1.5 1 ~ 1.7 1 ~ 1.7 1 ~ 

WOA 5.3 6 6/0/4 5.4 5 8/0/2 3.4 2 4/0/6 

SMA 2.7 2 1/0/9 2.7 2 6/3/1 3.7 3 5/3/2 

JAYA 4.6 4 6/0/4 3.1 3 5/1/4 5.0 6 6/1/3 

MVO 4.9 5 4/1/5 4.4 4 7/0/3 4.7 5 5/0/5 

MSCA 6.8 8 5/0/5 7.3 8 9/0/1 6.9 8 8/0/2 

HHO 6.7 7 7/0/3 5.7 6 6/0/4 4.5 4 4/0/6 

IGWO 3.5 3 2/0/8 5.7 7 9/0/1 6.1 7 8/0/2 

Table 20. The PSNR results at 2, 4 and 6 threshold level 

Thresholds 2 4  6  

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

PLO 2.4 1 ~ 1.8 1  1.7 1 ~ 

WOA 6.0 7 6/0/4 5.0 5 8/0/2 4.2 4 8/0/2 

SMA 3.9 3 2/0/8 2.2 3 4/4/2 2.3 2 5/2/3 

JAYA 4.0 4 2/0/8 2.0 2 2/2/6 2.4 3 6/3/1 

MVO 3.6 2 2/0/8 4.4 4 8/0/2 4.7 5 9/0/1 

MSCA 5.6 6 5/0/5 7.3 8 10/0/0 7.6 8 10/0/0 

HHO 6.5 8 5/0/5 6.8 7 9/0/1 6.0 6 10/0/0 

IGWO 4.0 5 3/0/7 6.5 6 10/0/0 7.1 7 10/0/0 

Table 21. The SSIM results at 2, 4 and 6 threshold level 

Thresholds 2 4  6  

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

PLO 2.5 1 ~ 1.7 1 ~ 1.8 1 ~ 

WOA 6.4 7 7/0/3 5.5 5 9/0/1 4.5 4 9/0/1 

SMA 3.0 2 3/0/7 2.4 3 2/2/6 1.9 2 4/1/5 

JAYA 3.4 3 3/0/7 1.9 2 2/1/7 2.5 3 4/3/3 

MVO 3.7 4 1/1/8 4.4 4 6/0/4 4.6 5 9/0/1 

MSCA 5.3 6 5/0/5 7.0 7 10/0/0 7.3 8 10/0/0 

HHO 6.5 8 6/0/4 7.1 8 9/0/1 6.5 6 10/0/0 

IGWO 5.2 5 1/0/9 6.0 6 10/0/0 6.9 7 10/0/0 



Furthermore, we chose to showcase the segmentation results of  BC08 at 6 threshold levels for 

comparison. Figure 21 shows that in the segmentation process at low threshold levels, the previously blurry 

areas surrounding the original images are distinctly separated with vibrant colors. Upon meticulous 

observation, the results from PLO segmentation retain more local features of  the image, displaying even 

brighter and more vivid colors. Analyzing the results of  the low-threshold image segmentation experiments 

above reveals that the proposed PLO excels in low-threshold image segmentation within this model, 

outperforming other algorithms. 

 

Figure 21. Comparison of  segmentation results for BC08 at 6 threshold levels 

6.2.2 Experimental at high threshold levels 

This section increases segmentation precision by elevating the thresholds. Simultaneously grouping 16, 

20, and 24 threshold levels, PLO competes again with the above 7 algorithms to segment the same set of  10 

images. Tables A.6 to A.8 in the appendix present the averages and standard deviations of  the three metrics 

after segmentation by PLO and the other 7 algorithms. In most images, PLO outperforms others at high 



threshold levels with superior averages and more stability in standard deviations. Additionally, Tables 22, 23, 

and 24 summarize the statistical results of  these metrics using WSRT and FT. Statistical analysis reveals that 

when confronted with the demand for higher segmentation accuracy, the proposed PLO method continues 

to surpass other algorithms. 

Table 22. The FSIM results at 16, 20 and 24 threshold level 

Thresholds 16  20  24  

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

PLO 1.6 1 ~ 1.7 1 ~ 1.1 1  

WOA 3.0 2 3/1/6 2.5 2 4/1/5 3.1 2 2/0/8 

SMA 5.2 5 5/0/5 4.1 4 6/0/4 3.4 3 2/0/8 

JAYA 4.0 4 5/0/5 4.7 5 8/0/2 3.9 4 7/0/3 

MVO 3.9 3 4/0/3 3.3 3 6/0/4 5.5 6 9/0/1 

MSCA 6.5 8 8/0/2 6.4 6 9/0/1 6.9 7 9/0/1 

HHO 5.9 6 6/0/4 6.4 6 8/0/2 5.1 5 8/0/2 

IGWO 5.9 7 9/0/1 6.9 8 8/0/2 7.0 8 10/0/0 

Table 23. The PSNR results at 16, 20 and 24 threshold level 

Thresholds 16  20  24  

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

PLO 1.6 1 ~ 1.5 1 ~ 1.3 1 ~ 

WOA 2.1 2 2/1/7 1.9 2 4/2/4 1.9 2 3/0/7 

SMA 3.3 3 5/0/5 2.9 3 6/0/4 2.9 3 6/0/4 

JAYA 3.8 4 7/0/3 4.4 4 10/0/0 3.9 4 10/0/0 

MVO 4.6 5 8/0/2 4.9 5 8/0/2 6.1 6 10/0/0 

MSCA 7.1 7 10/0/0 6.1 6 10/0/0 6.5 7 10/0/0 

HHO 6.1 6 7/0/3 6.4 7 8/0/2 5.7 5 10/0/0 

IGWO 7.4 8 10/0/0 7.9 8 10/0/0 7.7 8 10/0/0 

Table 24. The SSIM results at 16, 20 and 24 threshold level 

Thresholds 16  20  24  

 Mean Rank +/-/= Mean Rank +/-/= Mean Rank +/-/= 

PLO 1.5 1 ~ 1.5 1 ~ 1.4 1 ~ 

WOA 2.6 3 3/1/6 2.0 2 2/2/6 2 2 2/0/8 

SMA 2.3 2 2/1/7 2.5 3 3/1/6 2.6 3 2/0/8 

JAYA 3.7 4 9/0/1 4.4 4 10/0/0 4 4 10/0/0 

MVO 5.1 5 10/0/0 5 5 10/0/0 6.3 7 10/0/0 

MSCA 6.4 6 10/0/0 5.8 6 10/0/0 5.9 5 10/0/0 

HHO 6.9 7 10/0/0 6.8 7 10/0/0 6.1 6 10/0/0 

IGWO 7.5 8 10/0/0 8 8 10/0/0 7.7 8 10/0/0 

In a comparative analysis, we present the segmentation results of  BC04 at the 24-threshold level in the 

Figure 22. With increasing thresholds, images are segmented into more regions, achieving greater accuracy, 

particularly for images with multiple objects, textures, or intricate structures. Examination of  the original 

images reveals complex and dense structures in central regions and blurriness in edge areas due to noise 

interference. Post-segmentation, these areas are distinctly separated. Upon close observation, the results from 

PLO segmentation exhibit vividly colored and well-defined features in central regions, and even the 

previously blurry edge regions are precisely segmented. This level of  precision is unmatched by other 



algorithms. Analysis of  these segmentation experiment results indicates that the proposed PLO method 

outperforms other algorithms in this image segmentation model, especially in achieving accurate 

segmentation at high threshold levels. 

 

Figure 22. Comparison of  segmentation results for BC04 at 24 threshold levels 

6.3 Feature selection experiments 

6.3.1 Dataset and experimental setup 

In this section, the performance of  our proposed Feature Selection (FS) model is assessed across eight 

medical datasets. Four of  these datasets are sourced from the well-known UCI Machine Learning Repository, 

while the remaining four are collected from patients recruited from a single center between May 5th and May 

31st, 2020 (Outpatient HD Unit, the First Affiliated Hospital, Wenzhou Medical University). 

The application of  the FS model to these datasets aimed to assess its effectiveness under various 



conditions and validate its suitability for classifying medical data. Using publicly available datasets ensured 

transparency, and the incorporation of  authentic medical data from reliable sources guaranteed the accuracy 

of  the study. Table 25 provides a concise overview of  these datasets, along with detailed information about 

their key parameters. 

Table 25. The 8 Medical datasets. 

Source Dataset Samples Features Classes 

University of California Irvine 

datasets (UCI) 

(https://archive.ics.uci.edu/ml/ 

datasets.php) 

Breast cancer 699 10 2 

Breast 569 30 2 

Parkinson 195 22 2 

Heart 270 13 2 

Outpatient HD unit of First 

Affiliated Hospital 

of Wenzhou Medical University 

PH (Pulmonary Hypertension) [95] 90 25 2 

DH1 (Hemodialysis) [96] 1940 19 2 

DH2 (Hemodialysis) [97] 1940 15 2 

DH3 (Hemodialysis) [98] 1239 42 2 

In the realm of  pattern recognition, a confusion matrix serves as a schematic representation of  

classification predictions. The confusion matrix illustrates the association between the actual class attributes 

of  sample data and the predicted categories, constituting a crucial metric for evaluating classification model 

performance. Evaluation metrics like accuracy, specificity, and sensitivity can be derived from the confusion 

matrix. In binary classification scenarios, samples are categorized as positive or negative. The confusion 

matrix includes True Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN). 

Among them, accuracy (ACC) is the most well-known classification evaluation metric, which measures 

the ability of  the classifier to recognize correct samples. The ACC lies in [0,1], and the closer the ACC is to 

1, the better the classification performance. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(43) 

Precision (PRE) quantifies the ratio of  correctly classified positive cases to the total instances classified 

as positive. A higher PRE value, closer to 1, signifies superior classifier performance. The PRE is computed 

using the following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(44) 

Sensitivity (SEN), also known as recall or true positive rate, denotes the likelihood that a patient with a 

disease is correctly identified as positive by the classifier. It gauges the classifier's capacity to detect positive 

cases. A SEN value closer to 1 indicates a higher ability to correctly identify individuals with the condition. 

Sensitivity is computed using the following formula: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(45) 

Specificity (SPE) represents the probability that an individual without the disease will be correctly 

identified as disease-free by the classifier. It evaluates the classifier's capability to recognize negative cases, 

reflecting its aptitude in identifying individuals without the condition. A specificity value closer to 1 indicates 

a higher ability to correctly identify disease-free individuals. SPE is calculated using the following formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(46) 

The Matthews Correlation Coefficient (MCC) quantifies the correlation between the predicted and 

actual classifications. In balanced datasets, elevated values of  both ACC and MCC indicate superior 

https://archive.ics.uci.edu/ml/


prediction quality. However, in unbalanced datasets, MCC offers a more accurate assessment of  the 

predictor's predictive quality compared to ACC. The MCC is calculated using the following formula: 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

(47) 

Furthermore, as part of  this experiment, several discrete algorithms are included for comparison, as 

detailed in Table 26. Moreover, the feature selection experiment employs a population size of  20, and the 

validity of  the experimental results is confirmed through the classical tenfold cross-validation method. 

Table 26. Participants and their parameter settings 

Algorithms Parameter(s) 

Binary moth-flame optimization algorithm (bMFO)[64] 𝑏 = 1 

Binary grey wolf optimization (bGWO) [99] ~ 

Binary particle swarm optimization (bPSO) [100] 𝑐1 = 2; 𝑐2 = 2; 𝑉𝑚𝑎𝑥 = 6 

Binary ant lion optimization (bPLO) [101] ~ 

Binary bat algorithm (bBA) [102] 
𝐴 = 0.5; 𝑟 = 0.5; 𝑟0 = 0.5; 𝛼 = 0.9; 

𝜆 = 0.9; 𝑄𝑚𝑖𝑛 = 0; 𝑄𝑚𝑎𝑥 = 2 

Binary salp swarm algorithm (bSSA) [103] ~ 

Binary whale optimization algorithm (bWOA) [65] 𝑎1 = [2,0]; 𝑎2 = [−2, −1]; 𝑏 = 1 

Binary polar lights optimization (bPLO) 𝑚 = 100;  𝛼 = [1,1.5] 

6.3.2 Medical datasets experiments 

 In this subsection, we arrange bPLO and the other 8 algorithms for feature selection on the target 

dataset respectively. The results are analyzed based on 5 kinds of  metrics. 

Table 27 illustrates the accuracy results of  eight algorithms on the UCI dataset. The method based on 

bPLO outperforms others with the best average results over 10 independent experiments. The average 

accuracy of  the bPLO-based approach across the eight datasets stands at 98.57%, 98.77%, 92.83%, 94.44%, 

97.78%, 95.97%, 92.78%, and 92.01%, showcasing its remarkable consistency across different datasets. Based 

on this analysis, the bPLO-based method excels in both predictive accuracy and stability, surpassing all other 

methods. 

Table 28 presents the specificity results for these 8 algorithms. Visible in the table, the bPLO-based 

method consistently ranks first in most datasets. The average specificity achieved by bPLO ranges from 

90.83% to 98.35% across various datasets, indicating the robustness of  its predictions. 

Table 29 displays the average accuracy results and standard deviations. The bPLO-based method 

exhibits superior and more consistent accuracy outcomes across eight datasets, achieving average results of  

99.14%, 97.90%, 91.40%, 93.26%, 95.48%, 95.70%, 93.12%, and 93.66%. When compared to other 

prediction methods, bPLO stands out in accurately predicting positive instances. 

Table 30 presents the average values and standard deviations of  MCC. The proposed method 

consistently performs well with MCC average results of  0.9690, 0.9741, 0.8490, 0.8895, 0.9598, 0.8937, 

0.8561, 0.8422, showcasing its superior performance and stability. 

Table 31 shows the mean and standard deviation of  the F-measure. F-measure obtained by PLO are 

higher in most of  the datasets. Analysis of  the experimental data leads to the conclusion that the proposed 

bPLO method is a more effective classification approach. 

From the accuracy, specificity, precision, MCC, and f-measure experimental results, it is evident that 

bPLO meets our expectations, demonstrating reliable and robust predictive performance." 



Table 27. Accuracy values on medical datasets 

 Breast cancer Breast EW DH1 Heart 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 98.15% 0.0201  98.42% 0.0162  92.37% 0.0203  92.22% 0.0395  

bGWO 98.42% 0.0106  98.60% 0.0148  92.68% 0.0186  93.33% 0.0344  

bPSO 98.14% 0.0118  98.59% 0.0163  92.37% 0.0166  94.07% 0.0538  

bALO 98.28% 0.0113  98.60% 0.0144  92.47% 0.0248  93.33% 0.0437  

bBA 95.57% 0.0305  94.02% 0.0242  84.07% 0.0650  84.07% 0.0532  

bSSA 98.43% 0.0142  98.77% 0.0180  92.22% 0.0133  92.96% 0.0367  

bWOA 98.28% 0.0132  98.25% 0.0176  91.55% 0.0190  93.33% 0.0555  

bPLO 98.57% 0.0135  98.77% 0.0198  92.83% 0.0210  94.44% 0.0462  

 PH Parkinson DH2 DH3 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 93.33% 0.0777  94.90% 0.0478  92.17% 0.0191  91.69% 0.0208  

bGWO 96.67% 0.0537  94.84% 0.0490  92.32% 0.0227  92.17% 0.0194  

bPSO 95.56% 0.0574  93.89% 0.0392  92.37% 0.0094  91.69% 0.0287  

bALO 96.67% 0.0537  94.34% 0.0375  92.11% 0.0183  91.69% 0.0131  

bBA 77.78% 0.1960  83.94% 0.0924  82.10% 0.1355  87.97% 0.0372  

bSSA 96.67% 0.0703  95.42% 0.0378  91.81% 0.0271  91.53% 0.0232  

bWOA 94.44% 0.0586  93.79% 0.0411  91.70% 0.0195  91.77% 0.0284  

bPLO 97.78% 0.0750  95.97% 0.0317  92.78% 0.0152  92.01% 0.0326  

Table 28. Specificity values on medical datasets 

 Breast cancer Breast EW DH1 Heart 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 98.33% 0.0215  95.76% 0.0231  93.94% 0.0181  87.50% 0.1128  

bGWO 97.92% 0.0295  96.23% 0.0209  94.28% 0.0197  88.33% 0.0703  

bPSO 97.08% 0.0343  96.19% 0.0243  93.95% 0.0296  90.00% 0.1097  

bALO 97.10% 0.0342  96.23% 0.0221  94.36% 0.0273  90.83% 0.0730  

bBA 93.77% 0.0659  85.26% 0.0664  89.82% 0.0238  78.33% 0.1192  

bSSA 97.92% 0.0220  96.71% 0.0254  94.28% 0.0176  89.17% 0.0966  

bWOA 97.08% 0.0395  95.28% 0.0277  93.78% 0.0207  90.00% 0.0946  

bPLO 98.35% 0.0213  96.73% 0.0295  94.62% 0.0203  90.83% 0.0829  

 PH Parkinson DH2 DH3 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 87.50% 0.1768  91.50% 0.1765  93.03% 0.0244  93.23% 0.0253  

bGWO 92.50% 0.1208  89.00% 0.2025  92.62% 0.0234  93.99% 0.0285  

bPSO 92.50% 0.1208  89.50% 0.1343  93.13% 0.0206  93.38% 0.0316  

bALO 92.50% 0.1208  89.00% 0.1647  93.02% 0.0241  94.31% 0.0271  

bBA 77.50% 0.2189  67.50% 0.2781  82.48% 0.1654  90.29% 0.0285  

bSSA 95.00% 0.1581  94.00% 0.1578  91.71% 0.0415  94.30% 0.0333  

bWOA 90.00% 0.1291  90.50% 0.1674  91.81% 0.0275  93.53% 0.0330  

bPLO 92.50% 0.1208  96.00% 0.1350  93.43% 0.0174  94.29% 0.0396  

Table 29. Precision values on medical datasets 

 Breast cancer Breast EW DH1 Heart 



 AVG STD AVG STD AVG STD AVG STD 

bMFO 99.13% 0.0113  97.60% 0.0231  90.41% 0.0270  91.26% 0.0726  

bGWO 98.94% 0.0149  97.85% 0.0209  90.93% 0.0294  91.47% 0.0491  

bPSO 98.52% 0.0172  97.86% 0.0243  90.57% 0.0429  92.94% 0.0743  

bALO 98.51% 0.0173  98.11% 0.0221  91.08% 0.0401  93.16% 0.0523  

bBA 96.81% 0.0330  92.46% 0.0664  81.72% 0.0591  84.06% 0.0801  

bSSA 98.92% 0.0114  98.12% 0.0254  90.83% 0.0257  92.25% 0.0658  

bWOA 98.52% 0.0196  97.37% 0.0277  89.99% 0.0318  92.62% 0.0627  

bPLO 99.14% 0.0111  97.90% 0.0295  91.40% 0.0313  93.26% 0.0583  

 PH Parkinson DH2 DH3 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 92.14% 0.1071  94.45% 0.0496  92.70% 0.0231  92.41% 0.0262  

bGWO 95.00% 0.0805  93.90% 0.0573  92.32% 0.0236  93.30% 0.0273  

bPSO 95.00% 0.0805  93.70% 0.0406  92.83% 0.0191  92.55% 0.0331  

bALO 95.00% 0.0805  93.86% 0.0491  92.68% 0.0236  93.54% 0.0284  

bBA 81.48% 0.1871  85.25% 0.0742  82.65% 0.1480  88.88% 0.0311  

bSSA 97.14% 0.0904  95.07% 0.0481  91.58% 0.0391  93.49% 0.0371  

bWOA 93.33% 0.0861  94.28% 0.0453  91.54% 0.0273  92.72% 0.0356  

bPLO 95.48% 0.0994  95.70% 0.0406  93.12% 0.0169  93.66% 0.0411  

Table 30. MCC values on medical datasets 

 Breast cancer Breast EW DH1 Heart 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 0.9604  0.0419  0.9667  0.0325  0.8395  0.0436  0.8490  0.0848  

bGWO 0.9660  0.0226  0.9704  0.0293  0.8459  0.0391  0.8680  0.0774  

bPSO 0.9597  0.0255  0.9702  0.0342  0.8401  0.0340  0.8840  0.1036  

bALO 0.9627  0.0244  0.9741  0.0303  0.8421  0.0527  0.8699  0.0892  

bBA 0.9027  0.0684  0.8747  0.1145  0.6596  0.1443  0.6799  0.1569  

bSSA 0.9657  0.0309  0.9706  0.0351  0.8359  0.0280  0.8620  0.0722  

bWOA 0.9623  0.0289  0.9631  0.0389  0.8216  0.0402  0.8684  0.1182  

bPLO 0.9690  0.0292  0.9741  0.0417  0.8490  0.0445  0.8895  0.0940  

 PH Parkinson DH2 DH3 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 0.8769  0.1422  0.8607  0.1319  0.8440  0.0379  0.8341  0.0415  

bGWO 0.9372  0.1012  0.8573  0.1378  0.8468  0.0455  0.8447  0.0376  

bPSO 0.9172  0.1070  0.8350  0.1115  0.8481  0.0190  0.8341  0.0571  

bALO 0.9372  0.1012  0.8467  0.1012  0.8429  0.0364  0.8351  0.0262  

bBA 0.5511  0.4242  0.4868  0.3489  0.6434  0.2695  0.7599  0.0727  

bSSA 0.9388  0.1273  0.8796  0.1008  0.8374  0.0542  0.8315  0.0473  

bWOA 0.8962  0.1094  0.8301  0.1161  0.8343  0.0391  0.8356  0.0568  

bPLO 0.9598  0.1368  0.8937  0.0853  0.8561  0.0303  0.8422  0.0628  

Table 31. F-measure values medical datasets 

 Breast cancer Breast EW DH1 Heart 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 98.56% 0.0159  98.77% 0.0118  90.09% 0.0280  93.30% 0.0353  



bGWO 98.79% 0.0082  98.90% 0.0107  90.51% 0.0238  94.23% 0.0322  

bPSO 98.58% 0.0090  98.90% 0.0126  90.16% 0.0193  94.93% 0.0442  

bALO 98.69% 0.0086  99.03% 0.0113  90.17% 0.0341  94.03% 0.0427  

bBA 96.63% 0.0227  95.56% 0.0385  77.81% 0.1096  86.15% 0.0648  

bSSA 98.80% 0.0109  98.92% 0.0131  89.84% 0.0176  93.90% 0.0301  

bWOA 98.70% 0.0098  98.65% 0.0142  88.97% 0.0245  94.13% 0.0525  

bPLO 98.91% 0.0104  99.04% 0.0152  90.66% 0.0279  95.18% 0.0402  

 PH Parkinson DH2 DH3 

 AVG STD AVG STD AVG STD AVG STD 

bMFO 94.50% 0.0620  96.74% 0.0300  91.94% 0.0202  91.14% 0.0226  

bGWO 97.27% 0.0439  96.77% 0.0305  92.14% 0.0236  91.61% 0.0222  

bPSO 96.16% 0.0499  96.06% 0.0250  92.16% 0.0101  91.13% 0.0308  

bALO 97.27% 0.0439  96.40% 0.0235  91.89% 0.0192  91.04% 1.51% 

bBA 78.35% 0.2025  90.10% 0.0555  82.07% 0.1290  87.03% 0.0443  

bSSA 98.33% 0.0527  97.05% 0.0240  91.66% 0.0275  90.87% 0.0246  

bWOA 95.25% 0.0504  95.99% 0.0265  91.55% 0.0197  91.23% 0.0302  

bPLO 97.42% 0.0572  97.39% 0.0202  92.59% 0.0162  91.36% 0.0370  

7. Conclusions and future works 

This paper proposes a novel physical-based algorithm called Polar Lights Optimization. The PLO 

involves novel search strategies based mainly on the motion trajectories of  energetic particles in the solar 

wind. 

Within PLO, an equation governing the temporal evolution of  the velocity of  high-energy charged 

particles was derived through the analysis of  their spiral motion along magnetic field lines, integrating the 

laws of  Lorentz and Newtonian mechanics. Additionally, to account for the trajectory deviation caused by 

collisions of  charged particles with air molecules in the auroral phenomenon, a damping factor was 

introduced into the velocity-time equation, thereby revising it and proposing a gyration strategy. Inspired by 

the transient pause of  charged particles in the atmosphere and the elliptical luminous bands observed in the 

sky, a strategy termed the aurora oval walk is formulated by incorporating Levy flight random walks. Finally, 

the phenomenon of  particle collisions during flight inspired the development of  the particle collision strategy. 

In the subsequent experimental section, the paper firstly designs experiments to analyze the 

optimization process of  PLO, and its adaptation to dimension scaling. Then, PLO is compared with 9 

classical algorithms as well as 8 high-performance improved algorithms in the IEEE CEC2014 classical test 

set and further compared using the IEEE CEC2022 latest test set, and the results prove that PLO is highly 

competitive. The results are also evaluated by the WSRT to rate the results, to separate the advantages and 

disadvantages among the algorithms, and to rank the algorithms in terms of  their overall ability by the FT. 

In the analysis of  the results, it can be understood that PLO can better coordinate exploration and 

exploitation and has higher search efficiency, which is mainly attributed to the proposed unique exploration 

and exploitation strategy: 

1) Based on the laws of  physics, a unique mathematical model is proposed in gyration motion to help 

energetic particles to carefully search for the optimal solution in the local utilization stage and gradually 

improve the convergence accuracy throughout the algorithm iterations. 



2) In the auroral oval walk, high-energy particles can search the entire space in dynamic steps, while 

using the center of  mass of  the high-energy particles as a guide to ensure the direction of  convergence of  

the entire particle population. 

3) Particle collision strategy, in the whole flight process of  high-energy particles, the collision behavior 

between particles throughout. Simulating the chaotic and disorderly collisions between particles provides the 

algorithm with a better ability to jump out of  the local optimum. Moreover, the PLO does not require 

predefined additional parameters, which gives it an advantage over similar algorithms and makes it easier to 

apply to other complex problems. 

Then, our study involves two key issues: multi-threshold image segmentation and feature selection. In 

MTIS, we harnessed the capabilities of  the PLO algorithm to address challenging image segmentation 

problems. We integrated it with an MTIS technique, enabling the calculation of  optimal threshold sets. The 

performance of  the PLO algorithm was evaluated using ten images from the IDC medical dataset, 

showcasing its adaptability in real-world optimization challenges.  

In FS, this paper has developed a binary version of  PLO to tackle challenging feature selection 

problems. Leveraging its underlying structure, we devised a wrapper feature selection (FS) method to select 

pertinent features. We use medical datasets to assess the PLO, demonstrating its proficiency in real-world 

optimization problems. Experimental validation confirmed the efficacy of  the PLO, underscoring its robust 

capabilities in tackling practical applications, particularly in the field of  medicine. These outcomes affirm the 

emergence of  PLO as a potent optimization tool poised to address diverse real-world problems. 

In future endeavors, PLO is poised for expansion into a dynamic optimizer, with applications spanning 

complex problems in engineering design, resource allocation, supply chain management, and beyond. 

Additionally, further research into adapting the algorithm to more adaptable scenarios is warranted, with the 

potential to apply PLO to more optimization scenarios such as emission dispatch problem, intrusion 

detection, medical diagnostics, and bankruptcy prediction. 
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Appendix 

Table A.1 IEEE CEC2014 function list 

Class  Function Describe Range 𝐹𝑖 ∗ =  𝐹𝑖(𝑥 ∗ ) 

Unimodal  

Functions 

F1 Rotated High Conditioned Elliptic 

Function 

[−100,100] 100 



F2 Rotated Bent Cigar Function [−100,100] 200 

F3 Rotated Discus Function [−100,100] 300 

Simple  

Multimodal  

Functions 

F4 Shifted and Rotated Rosen brock's 

Function 

[−100,100] 400 

F5 Shifted and Rotated Ackley’s Function [−100,100] 500 

F6 Shifted and Rotated Weierstrass 

Function 

[−100,100] 600 

F7 Shifted and Rotated Griewank’s 

Function 

[−100,100] 700 

F8 Shifted Rastrigin’s Function [−100,100] 800 

F9 Shifted and Rotated Rastrigin’s 

Function 

[−100,100] 900 

F10 Shifted Schwefel’s Function [−100,100] 1000 

F11 Shifted and Rotated Schwefel’s 

Function 

[−100,100] 1100 

F12 Shifted and Rotated Katsuura 

Function 

[−100,100] 1200 

F13 Shifted and Rotated HappyCat 

Function 

[−100,100] 1300 

F14 Shifted and Rotated HGBat Function [−100,100] 1400 

F15 

Shifted and Rotated Expanded 

Griewank’s plus Rosen brock's 

Function 

[−100,100] 1500 

F16 Shifted and Rotated Expanded 

Schaffer's F6 Function 

[−100,100] 1600 

Hybrid  

Functions 

F17 Hybrid Function 1 (N=3) [−100,100] 1700 

F18 Hybrid Function 2 (N=3) [−100,100] 1800 

F19 Hybrid Function 3 (N=4) [−100,100] 1900 

F20 Hybrid Function 4 (N=4) [−100,100] 2000 

F21 Hybrid Function 5 (N=5) [−100,100] 2100 

F22 Hybrid Function 6 (N=5) [−100,100] 2200 

Composition  

Functions 

F23 Composition Function 1 (N=5) [−100,100] 2300 

F24 Composition Function 2 (N=3) [−100,100] 2400 

F25 Composition Function 3 (N=3) [−100,100] 2500 

F26 Composition Function 4 (N=5) [−100,100] 2600 

F27 Composition Function 5 (N=5) [−100,100] 2700 

F28 Composition Function 6 (N=5) [−100,100] 2800 

F29 Composition Function 7 (N=3) [−100,100] 2900 

F30 Composition Function 8 (N=3) [−100,100] 3000 

Table A.2 IEEE CEC2022 function list 

Class Functions Describe 𝒇𝒊 

Unimodal 

Functions 

F1 Shifted and full Rotated Zakharov Function 300 



Multimodal 

Functions 

F2 Shifted and full Rotated Rosenbrock’s Function 400 

F3 Shifted and full Rotated Expanded Schaffer’s f6 

Function 

600 

F4 Shifted and full Rotated Non-Continuous Rastrigin’s 

Function 

800 

F5 Shifted and full Rotated Levy Function 900 

Hybrid 

Functions 

F6 Hybrid Function 1 (N = 3) 1800 

F7 Hybrid Function 2 (N = 6) 2000 

F8 Hybrid Function 3 (N = 5) 2200 

Composition 

Functions 

F9 Composition Function 1 (N = 5) 2300 

F10 Composition Function 2 (N = 4) 2400 

F11 Composition Function 3 (N = 5) 2600 

F12 Composition Function 4 (N = 6) 2700 

Table A.3 FSIM evaluation results at a low threshold 

  2 thresholds 4 thresholds 6 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 PLO 0.9155  0.0115  0.9517  0.0095  0.9621  0.0135  

 WOA 0.9002  0.0198  0.9365  0.0161  0.9565  0.0170  

 SMA 0.9165  0.0089  0.9410  0.0029  0.9430  0.0078  

 JAYA 0.9068  0.0185  0.9409  0.0026  0.9409  0.0055  

 MVO 0.8997  0.0273  0.9387  0.0113  0.9455  0.0256  

 MSCA 0.8888  0.0425  0.9265  0.0360  0.9473  0.0291  

 HHO 0.8910  0.0288  0.9455  0.0216  0.9567  0.0180  

 IGWO 0.9106  0.0219  0.9372  0.0136  0.9497  0.0176  

BC02 PLO 0.9483  0.0132  0.9721  0.0045  0.9721  0.0057  

 WOA 0.9304  0.0347  0.9669  0.0093  0.9668  0.0028  

 SMA 0.9502  0.0000  0.9682  0.0025  0.9660  0.0042  

 JAYA 0.9437  0.0190  0.9681  0.0012  0.9654  0.0008  

 MVO 0.9381  0.0174  0.9663  0.0087  0.9687  0.0089  

 MSCA 0.9369  0.0261  0.9635  0.0143  0.9682  0.0123  

 HHO 0.9329  0.0227  0.9686  0.0090  0.9716  0.0090  

 IGWO 0.9445  0.0235  0.9675  0.0088  0.9689  0.0076  

BC03 PLO 0.9001  0.0329  0.9591  0.0053  0.9638  0.0091  

 WOA 0.8986  0.0354  0.9429  0.0275  0.9624  0.0110  

 SMA 0.8885  0.0304  0.9561  0.0018  0.9581  0.0085  

 JAYA 0.8780  0.0278  0.9565  0.0010  0.9567  0.0087  

 MVO 0.8808  0.0287  0.9456  0.0302  0.9570  0.0119  

 MSCA 0.8799  0.0323  0.9351  0.0284  0.9528  0.0172  

 HHO 0.8818  0.0431  0.9395  0.0177  0.9591  0.0138  

 IGWO 0.8864  0.0315  0.9442  0.0323  0.9470  0.0219  

BC04 PLO 0.8192  0.0204  0.9277  0.0066  0.9606  0.0079  

 WOA 0.7987  0.0331  0.9142  0.0250  0.9546  0.0111  

 SMA 0.8140  0.0113  0.9334  0.0062  0.9681  0.0032  



 JAYA 0.8125  0.0105  0.9367  0.0017  0.9673  0.0041  

 MVO 0.8273  0.0214  0.9236  0.0137  0.9431  0.0271  

 MSCA 0.8086  0.0477  0.9054  0.0209  0.9371  0.0185  

 HHO 0.7751  0.0678  0.8994  0.0315  0.9365  0.0227  

 IGWO 0.8254  0.0249  0.9125  0.0201  0.9383  0.0171  

BC05 PLO 0.9228  0.0110  0.9476  0.0075  0.9592  0.0182  

 WOA 0.9113  0.0208  0.9437  0.0171  0.9642  0.0167  

 SMA 0.9176  0.0000  0.9415  0.0046  0.9542  0.0200  

 JAYA 0.9177  0.0009  0.9411  0.0007  0.9457  0.0194  

 MVO 0.9144  0.0212  0.9464  0.0143  0.9510  0.0178  

 MSCA 0.9197  0.0199  0.9438  0.0345  0.9476  0.0335  

 HHO 0.9002  0.0273  0.9453  0.0170  0.9632  0.0147  

 IGWO 0.9147  0.0205  0.9430  0.0135  0.9529  0.0192  

BC06 PLO 0.9292  0.0091  0.9616  0.0087  0.9590  0.0096  

 WOA 0.9028  0.0335  0.9499  0.0169  0.9584  0.0090  

 SMA 0.9232  0.0282  0.9552  0.0096  0.9578  0.0053  

 JAYA 0.9186  0.0290  0.9559  0.0021  0.9563  0.0045  

 MVO 0.8824  0.0644  0.9448  0.0188  0.9518  0.0161  

 MSCA 0.8695  0.0851  0.9253  0.0414  0.9320  0.0381  

 HHO 0.8814  0.0596  0.9400  0.0268  0.9579  0.0162  

 IGWO 0.9208  0.0122  0.9428  0.0174  0.9425  0.0277  

BC07 PLO 0.8313  0.0225  0.9168  0.0166  0.9444  0.0141  

 WOA 0.7935  0.1004  0.8902  0.0479  0.9377  0.0176  

 SMA 0.8275  0.0120  0.9207  0.0071  0.9326  0.0135  

 JAYA 0.8191  0.0305  0.9083  0.0195  0.9335  0.0171  

 MVO 0.8240  0.0418  0.9063  0.0257  0.9270  0.0357  

 MSCA 0.7808  0.0628  0.8801  0.0448  0.9084  0.0465  

 HHO 0.7832  0.0913  0.8783  0.1149  0.9217  0.0378  

 IGWO 0.8295  0.0247  0.8925  0.0488  0.9112  0.0479  

BC08 PLO 0.8355  0.0249  0.9340  0.0111  0.9656  0.0071  

 WOA 0.8182  0.0408  0.9191  0.0337  0.9548  0.0192  

 SMA 0.8308  0.0056  0.9393  0.0036  0.9705  0.0039  

 JAYA 0.8263  0.0147  0.9378  0.0076  0.9631  0.0070  

 MVO 0.8288  0.0152  0.9356  0.0078  0.9618  0.0128  

 MSCA 0.8141  0.0582  0.9173  0.0296  0.9485  0.0195  

 HHO 0.7903  0.0491  0.9021  0.0302  0.9301  0.0339  

 IGWO 0.8323  0.0219  0.9198  0.0266  0.9468  0.0185  

BC09 PLO 0.8895  0.0134  0.9349  0.0082  0.9532  0.0097  

 WOA 0.8951  0.0144  0.9282  0.0118  0.9406  0.0106  

 SMA 0.8862  0.0064  0.9288  0.0086  0.9400  0.0069  

 JAYA 0.8812  0.0166  0.9328  0.0063  0.9394  0.0070  

 MVO 0.8784  0.0176  0.9284  0.0098  0.9466  0.0116  

 MSCA 0.8687  0.0448  0.9072  0.0271  0.9248  0.0288  

 HHO 0.8825  0.0323  0.9201  0.0195  0.9374  0.0233  



 IGWO 0.8830  0.0212  0.9253  0.0174  0.9330  0.0284  

BC10 PLO 0.8129  0.0507  0.9252  0.0210  0.9455  0.0196  

 WOA 0.7836  0.0935  0.9130  0.0394  0.9246  0.0742  

 SMA 0.7929  0.0669  0.9365  0.0091  0.9580  0.0052  

 JAYA 0.7979  0.0539  0.9176  0.0322  0.9467  0.0119  

 MVO 0.7885  0.0839  0.8896  0.0598  0.9398  0.0225  

 MSCA 0.6988  0.1465  0.8663  0.0991  0.9068  0.0648  

 HHO 0.7862  0.1060  0.9079  0.0545  0.9349  0.0293  

 IGWO 0.7707  0.0809  0.8843  0.0523  0.9155  0.0345  

Table A.4 PSNR evaluation results at a low threshold 

  2 thresholds 4 thresholds 6 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 PLO 13.7945  0.3813  18.6307  0.2558  20.9763  0.6354  

 WOA 13.5065  0.9374  17.8400  0.9716  20.5842  0.8174  

 SMA 13.9288  0.1338  18.5147  0.0809  20.3879  0.3341  

 JAYA 13.6586  0.7961  18.5220  0.0441  20.3071  0.2375  

 MVO 13.5068  0.9265  18.0276  0.6317  20.2326  0.9573  

 MSCA 12.8862  1.2709  17.1507  1.1986  19.5098  1.5030  

 HHO 13.6370  1.4604  17.8661  1.1510  20.2976  1.0256  

 IGWO 13.3459  0.8718  17.5927  0.8416  19.7169  0.9999  

BC02 PLO 12.8503  0.7135  18.2490  0.2643  20.6511  0.3789  

 WOA 12.0622  1.6135  17.3513  1.0085  19.9385  0.5436  

 SMA 12.9319  0.0000  18.0870  0.4589  20.3967  0.3326  

 JAYA 12.6137  0.9144  18.1791  0.1564  20.4316  0.0812  

 MVO 12.5221  0.9068  17.6768  0.6187  20.0797  0.5402  

 MSCA 12.3907  1.0385  17.2854  0.8521  19.5763  1.0430  

 HHO 12.9010  1.0003  17.3179  1.0634  19.8282  1.1351  

 IGWO 12.6532  1.1004  17.2537  0.9880  19.6712  0.7961  

BC03 PLO 13.3466  0.2652  18.3440  0.2087  20.8629  0.4121  

 WOA 12.8323  0.7539  17.3220  1.0681  20.1226  0.8315  

 SMA 13.3005  0.0621  18.3508  0.0944  20.6722  0.3814  

 JAYA 13.2632  0.5085  18.3770  0.0492  20.6003  0.3836  

 MVO 13.2020  0.4326  17.6495  0.8870  20.1859  0.6300  

 MSCA 12.9482  0.6626  16.9149  0.9564  19.5499  0.9460  

 HHO 12.6908  1.2284  16.6965  1.0225  19.5473  1.0065  

 IGWO 13.2193  0.4843  17.6018  0.8765  19.3972  0.9829  

BC04 PLO 12.6963  0.4454  18.3972  0.3596  21.2059  0.5591  

 WOA 12.4149  0.3635  17.8581  0.9625  21.0344  0.6859  

 SMA 12.6035  0.1714  18.5015  0.4444  21.6389  0.3712  

 JAYA 12.5417  0.1979  18.6480  0.0816  21.7971  0.3358  

 MVO 12.7593  0.4862  17.9551  0.7100  20.1629  1.4399  

 MSCA 12.7116  0.6248  17.2471  0.9123  19.6821  0.9604  

 HHO 11.9705  1.0030  17.4546  0.8794  20.0253  1.2659  

 IGWO 12.7989  0.4217  17.6034  0.8006  19.9019  0.8352  



BC05 PLO 12.5785  0.6333  18.0806  0.2548  20.8771  0.9286  

 WOA 12.1831  1.0276  17.2596  1.2239  20.3387  0.9865  

 SMA 12.2633  0.0000  17.8558  0.2199  20.4671  0.9290  

 JAYA 12.2672  0.0499  17.9063  0.0460  20.1652  0.9059  

 MVO 12.2664  0.9626  17.4682  1.0131  19.7981  1.1265  

 MSCA 12.7819  0.9947  17.2630  1.2396  19.5220  1.3342  

 HHO 11.9394  1.0920  16.9311  1.1192  19.8004  1.2337  

 IGWO 12.2798  1.0686  17.0793  1.1116  19.3684  1.3064  

BC06 PLO 13.4683  0.3161  18.4421  0.2558  20.5816  0.3504  

 WOA 12.6554  1.0017  17.7756  0.5578  20.0179  0.6391  

 SMA 13.5175  0.2235  18.3638  0.3881  20.5307  0.4229  

 JAYA 13.3610  0.3909  18.4629  0.0686  20.7890  0.1824  

 MVO 13.1583  0.4983  17.6916  0.7226  19.7324  1.2846  

 MSCA 12.5082  1.1457  16.5788  1.2291  18.3887  1.2588  

 HHO 12.0741  1.5161  16.9816  1.1648  19.5183  1.3180  

 IGWO 13.2685  0.3860  17.3569  0.6495  19.0124  1.2196  

BC07 PLO 13.3515  0.7923  18.5427  0.4938  21.3822  0.5660  

 WOA 12.4348  1.7378  17.4838  1.8334  20.5409  1.0473  

 SMA 13.2490  0.3491  19.0094  0.1787  20.9041  0.7312  

 JAYA 12.9867  1.0228  18.4249  0.7360  20.9504  0.6803  

 MVO 13.4715  1.0334  18.2426  1.2421  20.3865  1.7742  

 MSCA 11.9162  2.0521  16.7327  2.0497  19.1263  1.6847  

 HHO 11.9979  2.0736  17.1918  2.5061  19.7298  1.7380  

 IGWO 13.3947  0.7006  17.4359  1.6784  19.2679  1.9845  

BC08 PLO 12.6446  0.7893  18.6294  0.4191  21.8556  0.4305  

 WOA 12.1866  0.9090  18.1572  1.2196  21.2898  1.1072  

 SMA 12.1712  0.0578  18.9296  0.2268  22.0803  0.3824  

 JAYA 12.2258  0.3233  18.8110  0.3421  21.7777  0.4902  

 MVO 12.2396  0.3511  18.6172  0.4160  21.5323  0.8380  

 MSCA 12.9613  0.9322  18.0053  0.9843  20.5074  1.1978  

 HHO 11.9936  1.1131  17.5901  1.0890  20.0256  1.5179  

 IGWO 12.4005  0.6527  17.9634  1.0834  20.6733  1.0657  

BC09 PLO 13.1711  0.3091  18.1870  0.1462  21.0653  0.3861  

 WOA 13.2423  0.3283  17.9969  0.3277  20.6214  0.3600  

 SMA 13.1288  0.0789  18.0992  0.1412  20.6657  0.2995  

 JAYA 13.2316  0.2453  18.1611  0.1087  20.7573  0.2348  

 MVO 13.2586  0.2251  17.8403  0.5542  20.2432  0.9109  

 MSCA 12.9987  0.6222  16.7890  1.1621  18.8398  1.2941  

 HHO 12.9334  0.8002  17.2555  0.9211  19.7801  0.9140  

 IGWO 13.0036  0.5365  17.4435  0.8114  19.3483  1.2177  

BC10 PLO 13.5978  1.9801  19.2055  0.8970  21.7485  1.3911  

 WOA 12.8448  2.5564  18.6602  1.9073  20.5413  3.3908  

 SMA 12.7336  2.7202  19.6210  0.6244  23.0377  0.6255  

 JAYA 13.0072  2.0828  19.2575  1.5129  22.5158  1.2440  



 MVO 13.0181  2.1122  17.9583  2.9372  21.8181  1.4738  

 MSCA 11.5462  3.3214  17.0310  2.4278  20.1151  2.4957  

 HHO 12.8496  2.8053  18.5916  2.5093  20.7009  1.8841  

 IGWO 12.8220  2.1732  17.8097  2.3054  20.3736  2.0531  

Table A.5 SSIM evaluation results at a low threshold 

  2 thresholds 4 thresholds 6 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 PLO 0.7230  0.0182  0.8822  0.0073  0.9216  0.0114  

 WOA 0.7119  0.0423  0.8541  0.0352  0.9092  0.0128  

 SMA 0.7307  0.0070  0.8799  0.0025  0.9107  0.0065  

 JAYA 0.7201  0.0323  0.8802  0.0014  0.9085  0.0054  

 MVO 0.7126  0.0416  0.8658  0.0200  0.9039  0.0276  

 MSCA 0.6788  0.0635  0.8340  0.0466  0.8869  0.0428  

 HHO 0.7161  0.0757  0.8523  0.0382  0.9056  0.0170  

 IGWO 0.7030  0.0378  0.8513  0.0285  0.8934  0.0248  

BC02 PLO 0.7250  0.0344  0.9092  0.0071  0.9465  0.0050  

 WOA 0.6724  0.0923  0.8827  0.0305  0.9352  0.0117  

 SMA 0.7309  0.0000  0.9067  0.0112  0.9438  0.0053  

 JAYA 0.7132  0.0529  0.9089  0.0044  0.9447  0.0016  

 MVO 0.7090  0.0485  0.8943  0.0167  0.9358  0.0092  

 MSCA 0.6893  0.0586  0.8822  0.0253  0.9259  0.0246  

 HHO 0.7260  0.0614  0.8794  0.0343  0.9282  0.0235  

 IGWO 0.7087  0.0621  0.8789  0.0330  0.9273  0.0182  

BC03 PLO 0.6887  0.0204  0.8783  0.0067  0.9269  0.0058  

 WOA 0.6492  0.0501  0.8417  0.0390  0.9041  0.0223  

 SMA 0.6907  0.0177  0.8787  0.0033  0.9265  0.0045  

 JAYA 0.6929  0.0351  0.8796  0.0018  0.9247  0.0046  

 MVO 0.6884  0.0312  0.8555  0.0265  0.9134  0.0119  

 MSCA 0.6715  0.0461  0.8336  0.0366  0.8998  0.0232  

 HHO 0.6465  0.0821  0.8080  0.0452  0.8873  0.0248  

 IGWO 0.6878  0.0342  0.8565  0.0250  0.8955  0.0252  

BC04 PLO 0.5374  0.0301  0.7889  0.0154  0.8751  0.0144  

 WOA 0.5086  0.0208  0.7603  0.0362  0.8607  0.0172  

 SMA 0.5197  0.0149  0.7852  0.0131  0.8802  0.0089  

 JAYA 0.5186  0.0142  0.7867  0.0022  0.8835  0.0076  

 MVO 0.5473  0.0340  0.7809  0.0252  0.8579  0.0242  

 MSCA 0.5499  0.0431  0.7728  0.0244  0.8417  0.0276  

 HHO 0.4961  0.0612  0.7546  0.0330  0.8292  0.0343  

 IGWO 0.5431  0.0297  0.7731  0.0302  0.8394  0.0273  

BC05 PLO 0.6786  0.0304  0.8883  0.0070  0.9336  0.0086  

 WOA 0.6496  0.0567  0.8525  0.0376  0.9147  0.0171  

 SMA 0.6650  0.0000  0.8825  0.0078  0.9277  0.0088  

 JAYA 0.6652  0.0026  0.8850  0.0015  0.9247  0.0092  

 MVO 0.6594  0.0581  0.8626  0.0346  0.9130  0.0252  



 MSCA 0.6789  0.0506  0.8546  0.0417  0.9065  0.0294  

 HHO 0.6299  0.0670  0.8348  0.0420  0.9027  0.0251  

 IGWO 0.6571  0.0559  0.8510  0.0394  0.9003  0.0312  

BC06 PLO 0.6955  0.0166  0.8764  0.0062  0.9196  0.0058  

 WOA 0.6484  0.0601  0.8552  0.0192  0.9034  0.0163  

 SMA 0.7033  0.0101  0.8769  0.0109  0.9209  0.0070  

 JAYA 0.6956  0.0180  0.8799  0.0027  0.9250  0.0034  

 MVO 0.6896  0.0210  0.8560  0.0243  0.8958  0.0409  

 MSCA 0.6402  0.0786  0.8151  0.0482  0.8630  0.0406  

 HHO 0.6138  0.0937  0.8184  0.0500  0.8814  0.0388  

 IGWO 0.6860  0.0252  0.8431  0.0252  0.8793  0.0335  

BC07 PLO 0.6105  0.0325  0.8041  0.0191  0.8762  0.0117  

 WOA 0.5508  0.1048  0.7620  0.0729  0.8495  0.0274  

 SMA 0.6105  0.0206  0.8216  0.0054  0.8707  0.0140  

 JAYA 0.5964  0.0442  0.8012  0.0234  0.8666  0.0161  

 MVO 0.6100  0.0558  0.7942  0.0404  0.8492  0.0551  

 MSCA 0.5290  0.1039  0.7388  0.0830  0.8148  0.0591  

 HHO 0.5338  0.1170  0.7423  0.1294  0.8249  0.0548  

 IGWO 0.6076  0.0323  0.7623  0.0680  0.8162  0.0679  

BC08 PLO 0.5374  0.0459  0.7926  0.0189  0.8731  0.0135  

 WOA 0.5016  0.0423  0.7617  0.0448  0.8571  0.0264  

 SMA 0.5101  0.0094  0.7875  0.0076  0.8779  0.0112  

 JAYA 0.5037  0.0227  0.7897  0.0160  0.8678  0.0140  

 MVO 0.5085  0.0222  0.7863  0.0180  0.8617  0.0267  

 MSCA 0.5420  0.0559  0.7666  0.0414  0.8380  0.0371  

 HHO 0.4835  0.0618  0.7434  0.0416  0.8148  0.0470  

 IGWO 0.5196  0.0405  0.7668  0.0428  0.8434  0.0342  

BC09 PLO 0.6152  0.0176  0.8405  0.0052  0.9088  0.0072  

 WOA 0.6181  0.0163  0.8346  0.0109  0.9014  0.0065  

 SMA 0.6135  0.0088  0.8385  0.0032  0.9054  0.0047  

 JAYA 0.6251  0.0225  0.8385  0.0020  0.9047  0.0047  

 MVO 0.6287  0.0233  0.8301  0.0221  0.8902  0.0251  

 MSCA 0.6124  0.0330  0.8006  0.0528  0.8584  0.0365  

 HHO 0.6010  0.0483  0.8070  0.0362  0.8733  0.0194  

 IGWO 0.6064  0.0292  0.8144  0.0351  0.8637  0.0314  

BC10 PLO 0.5449  0.0812  0.7759  0.0354  0.8494  0.0421  

 WOA 0.5059  0.1152  0.7570  0.0759  0.7952  0.1355  

 SMA 0.5114  0.1082  0.7945  0.0236  0.8864  0.0149  

 JAYA 0.5226  0.0844  0.7849  0.0488  0.8688  0.0398  

 MVO 0.5202  0.0939  0.7360  0.1116  0.8546  0.0415  

 MSCA 0.4281  0.1609  0.6857  0.1187  0.7855  0.0973  

 HHO 0.5144  0.1310  0.7535  0.0967  0.8119  0.0635  

 IGWO 0.5074  0.1022  0.7228  0.0884  0.7990  0.0772  

Table A.6 FSIM evaluation results at a high threshold 



  16 thresholds 20 thresholds 24 thresholds 

Image Method AVG STD AVG AVG STD AVG 

BC01 PLO 0.9933  0.0038  0.9947  0.0035  0.9971  0.0019  

 WOA 0.9920  0.0069  0.9949  0.0039  0.9967  0.0023  

 SMA 0.9893  0.0098  0.9931  0.0065  0.9964  0.0029  

 JAYA 0.9917  0.0038  0.9931  0.0049  0.9961  0.0020  

 MVO 0.9918  0.0060  0.9937  0.0032  0.9929  0.0059  

 MSCA 0.9870  0.0145  0.9926  0.0044  0.9939  0.0054  

 HHO 0.9917  0.0059  0.9905  0.0108  0.9942  0.0045  

 IGWO 0.9896  0.0051  0.9899  0.0080  0.9911  0.0081  

BC02 PLO 0.9940  0.0045  0.9965  0.0024  0.9971  0.0022  

 WOA 0.9907  0.0085  0.9944  0.0041  0.9956  0.0037  

 SMA 0.9866  0.0104  0.9942  0.0040  0.9956  0.0043  

 JAYA 0.9925  0.0036  0.9939  0.0052  0.9956  0.0034  

 MVO 0.9905  0.0070  0.9946  0.0034  0.9955  0.0033  

 MSCA 0.9874  0.0097  0.9923  0.0077  0.9954  0.0029  

 HHO 0.9879  0.0113  0.9930  0.0043  0.9960  0.0027  

 IGWO 0.9871  0.0098  0.9918  0.0049  0.9917  0.0081  

BC03 PLO 0.9894  0.0105  0.9952  0.0036  0.9964  0.0017  

 WOA 0.9862  0.0117  0.9927  0.0066  0.9962  0.0016  

 SMA 0.9866  0.0100  0.9919  0.0071  0.9935  0.0111  

 JAYA 0.9896  0.0088  0.9917  0.0045  0.9951  0.0022  

 MVO 0.9876  0.0080  0.9929  0.0041  0.9926  0.0048  

 MSCA 0.9829  0.0106  0.9891  0.0076  0.9916  0.0053  

 HHO 0.9823  0.0119  0.9865  0.0124  0.9918  0.0065  

 IGWO 0.9879  0.0051  0.9874  0.0059  0.9922  0.0063  

BC04 PLO 0.9892  0.0051  0.9920  0.0036  0.9927  0.0030  

 WOA 0.9848  0.0080  0.9869  0.0086  0.9920  0.0049  

 SMA 0.9854  0.0077  0.9875  0.0073  0.9894  0.0052  

 JAYA 0.9856  0.0077  0.9877  0.0063  0.9895  0.0048  

 MVO 0.9795  0.0108  0.9837  0.0119  0.9872  0.0067  

 MSCA 0.9786  0.0097  0.9845  0.0057  0.9871  0.0089  

 HHO 0.9745  0.0162  0.9832  0.0080  0.9877  0.0071  

 IGWO 0.9807  0.0084  0.9789  0.0137  0.9833  0.0098  

BC05 PLO 0.9878  0.0063  0.9928  0.0057  0.9950  0.0037  

 WOA 0.9897  0.0067  0.9891  0.0081  0.9945  0.0053  

 SMA 0.9815  0.0087  0.9887  0.0087  0.9929  0.0072  

 JAYA 0.9849  0.0092  0.9878  0.0091  0.9942  0.0030  

 MVO 0.9841  0.0106  0.9922  0.0033  0.9919  0.0059  

 MSCA 0.9841  0.0081  0.9852  0.0081  0.9901  0.0063  

 HHO 0.9868  0.0106  0.9884  0.0073  0.9928  0.0049  

 IGWO 0.9805  0.0134  0.9880  0.0087  0.9909  0.0059  

BC06 PLO 0.9836  0.0101  0.9890  0.0148  0.9936  0.0053  

 WOA 0.9755  0.0167  0.9893  0.0094  0.9892  0.0095  



 SMA 0.9701  0.0148  0.9788  0.0137  0.9918  0.0079  

 JAYA 0.9796  0.0176  0.9863  0.0106  0.9892  0.0136  

 MVO 0.9848  0.0144  0.9895  0.0094  0.9910  0.0098  

 MSCA 0.9793  0.0168  0.9779  0.0280  0.9912  0.0073  

 HHO 0.9769  0.0191  0.9823  0.0172  0.9879  0.0120  

 IGWO 0.9826  0.0108  0.9839  0.0203  0.9901  0.0067  

BC07 PLO 0.9793  0.0108  0.9835  0.0078  0.9910  0.0053  

 WOA 0.9854  0.0050  0.9880  0.0045  0.9906  0.0042  

 SMA 0.9819  0.0076  0.9856  0.0075  0.9901  0.0049  

 JAYA 0.9727  0.0089  0.9780  0.0107  0.9891  0.0056  

 MVO 0.9769  0.0097  0.9844  0.0069  0.9852  0.0102  

 MSCA 0.9652  0.0207  0.9796  0.0099  0.9858  0.0070  

 HHO 0.9778  0.0130  0.9820  0.0100  0.9899  0.0033  

 IGWO 0.9668  0.0136  0.9784  0.0094  0.9860  0.0048  

BC08 PLO 0.9856  0.0065  0.9892  0.0040  0.9919  0.0023  

 WOA 0.9845  0.0054  0.9883  0.0059  0.9904  0.0055  

 SMA 0.9855  0.0065  0.9869  0.0083  0.9914  0.0033  

 JAYA 0.9807  0.0095  0.9845  0.0077  0.9882  0.0070  

 MVO 0.9818  0.0058  0.9856  0.0062  0.9872  0.0062  

 MSCA 0.9776  0.0112  0.9838  0.0095  0.9832  0.0132  

 HHO 0.9737  0.0205  0.9803  0.0169  0.9849  0.0099  

 IGWO 0.9757  0.0107  0.9793  0.0154  0.9844  0.0074  

BC09 PLO 0.9850  0.0142  0.9932  0.0051  0.9951  0.0035  

 WOA 0.9866  0.0107  0.9854  0.0092  0.9890  0.0089  

 SMA 0.9761  0.0136  0.9839  0.0095  0.9880  0.0102  

 JAYA 0.9798  0.0123  0.9890  0.0065  0.9907  0.0070  

 MVO 0.9848  0.0094  0.9876  0.0107  0.9909  0.0056  

 MSCA 0.9778  0.0203  0.9845  0.0105  0.9876  0.0092  

 HHO 0.9797  0.0107  0.9835  0.0123  0.9902  0.0073  

 IGWO 0.9759  0.0166  0.9855  0.0102  0.9850  0.0146  

BC10 PLO 0.9885  0.0076  0.9918  0.0030  0.9943  0.0022  

 WOA 0.9882  0.0082  0.9922  0.0037  0.9921  0.0090  

 SMA 0.9832  0.0138  0.9906  0.0101  0.9946  0.0023  

 JAYA 0.9766  0.0161  0.9879  0.0076  0.9910  0.0049  

 MVO 0.9814  0.0123  0.9843  0.0101  0.9895  0.0051  

 MSCA 0.9770  0.0187  0.9861  0.0100  0.9870  0.0078  

 HHO 0.9767  0.0182  0.9875  0.0080  0.9899  0.0076  

 IGWO 0.9770  0.0189  0.9801  0.0116  0.9893  0.0048  

Table A.7 PSNR evaluation results at high threshold 

  16 thresholds 20 thresholds 24 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 PLO 28.5962  0.9945  30.2501  1.0820  31.8132  0.7975  

 WOA 28.4362  1.1837  30.2212  1.2076  31.9243  0.8350  

 SMA 27.9305  1.3398  29.7037  1.6220  31.5984  1.1639  



 JAYA 27.8967  1.1244  29.4154  1.0377  30.9584  0.9332  

 MVO 27.7292  1.1833  28.9139  1.4970  29.5219  1.3880  

 MSCA 27.0797  1.9681  29.0200  1.2241  30.0589  1.6131  

 HHO 27.6716  1.5487  28.5481  1.8520  30.3710  1.3498  

 IGWO 26.9873  1.1342  28.1485  1.3030  29.2566  1.5594  

BC02 PLO 28.0571  0.9677  30.0964  0.9511  31.5116  0.9372  

 WOA 27.4242  1.3917  29.4937  1.2717  31.0182  1.4142  

 SMA 26.8724  1.7396  29.3646  1.3128  30.6909  1.3305  

 JAYA 27.3685  0.9920  28.8898  1.3887  30.3119  1.2681  

 MVO 26.5944  1.2766  28.5289  1.2490  29.7835  1.2011  

 MSCA 25.9545  1.5788  27.9398  1.5558  29.8667  1.1463  

 HHO 26.1307  1.9897  27.9008  1.4195  30.1592  1.1612  

 IGWO 25.3835  1.2800  27.0613  1.3906  28.4955  1.9303  

BC03 PLO 27.8553  1.4442  30.3187  0.8889  31.9701  0.5648  

 WOA 26.9577  1.3925  29.3977  1.3802  31.4338  0.9533  

 SMA 27.5502  1.3785  29.5913  1.4460  30.9577  1.9468  

 JAYA 27.6363  1.1226  28.8827  1.0808  30.4237  0.8081  

 MVO 27.2831  1.3023  28.9774  1.0319  29.4600  1.1584  

 MSCA 26.2417  1.5133  28.0907  1.6437  29.5555  1.7595  

 HHO 25.8680  1.7735  27.8121  2.0591  28.9181  1.7003  

 IGWO 26.5236  1.0999  27.0054  1.3536  29.1069  1.2371  

BC04 PLO 28.9754  0.6088  30.6348  0.5840  32.0679  0.5309  

 WOA 28.4211  1.4943  29.4073  1.6934  31.6828  1.4978  

 SMA 27.8844  1.4198  29.3440  1.4337  30.5654  1.3682  

 JAYA 28.0089  0.6575  29.1586  1.2919  30.5812  1.0660  

 MVO 26.9648  1.5755  28.3572  1.7098  29.6698  1.4405  

 MSCA 26.1779  1.6080  28.4565  1.1867  29.7780  1.5383  

 HHO 26.5426  2.0557  28.2625  1.4882  29.8118  2.0944  

 IGWO 26.6143  1.0564  27.2711  1.8546  28.5553  1.4757  

BC05 PLO 27.7543  1.0944  30.1211  1.2510  31.6143  0.9802  

 WOA 28.0959  1.2464  29.2951  1.6142  31.3493  1.3739  

 SMA 27.1735  1.2935  29.3172  1.6488  30.8668  1.4919  

 JAYA 27.1470  1.3256  28.7349  1.4579  30.6203  1.0627  

 MVO 26.9012  1.4975  28.7876  1.3177  29.9154  1.4538  

 MSCA 26.6644  1.1859  27.9924  1.5131  29.6314  1.4077  

 HHO 27.0625  1.7087  28.1957  1.5280  29.8468  1.5311  

 IGWO 25.7641  1.8105  27.7816  1.4965  29.2748  1.1541  

BC06 PLO 27.1077  1.4377  29.3744  2.0428  31.4172  1.4359  

 WOA 26.1374  1.8472  29.3849  1.6887  30.4017  2.0404  

 SMA 25.7053  1.4624  27.6608  1.8789  30.8662  1.8009  

 JAYA 26.3766  1.6991  28.1703  1.5903  29.7832  1.9363  

 MVO 26.4146  1.7841  28.5767  1.6065  29.6192  1.8391  

 MSCA 25.4127  1.7376  26.7510  2.8923  29.6212  1.8857  

 HHO 26.0563  2.3183  27.1587  2.5647  29.4965  2.6975  



 IGWO 25.5765  1.4935  27.0558  2.1524  29.0569  1.3683  

BC07 PLO 27.3853  1.3284  28.8577  1.4507  31.1123  1.5350  

 WOA 28.3590  1.1873  29.6671  1.1552  30.8730  1.3153  

 SMA 27.8894  1.1023  29.1440  1.4702  30.8619  1.2717  

 JAYA 26.4927  1.2193  27.6982  1.7205  30.3730  1.3564  

 MVO 26.6285  1.5658  28.3832  1.6440  29.2997  1.9989  

 MSCA 25.0572  2.0278  27.7376  1.9622  29.0458  1.4920  

 HHO 26.9064  1.9699  28.2382  1.7877  30.2720  1.4445  

 IGWO 25.3391  1.7806  27.1370  1.6239  29.0979  1.5055  

BC08 PLO 28.8040  0.6800  30.3749  0.7978  31.8673  0.5492  

 WOA 28.3874  0.7013  30.0019  1.2844  31.3599  1.1196  

 SMA 28.2781  0.8120  29.6024  1.0092  31.2152  0.8795  

 JAYA 27.8283  1.3411  29.2542  1.1351  30.5367  1.2109  

 MVO 27.3191  1.1790  28.8858  1.2375  29.6983  1.2816  

 MSCA 26.9060  1.8299  28.7553  1.2896  29.5038  1.8620  

 HHO 26.4427  2.1878  28.5323  2.1477  29.8591  1.8292  

 IGWO 26.2674  1.4620  27.8616  1.5716  28.9444  1.4999  

BC09 PLO 27.8789  1.3228  30.1992  0.6843  31.5665  0.6355  

 WOA 27.8951  1.0671  29.3563  1.2144  30.6792  1.2732  

 SMA 27.0087  1.3368  28.7353  1.2129  30.1612  1.3987  

 JAYA 26.8698  0.9840  28.8507  0.9261  30.1529  1.1997  

 MVO 26.9076  1.3619  28.1824  1.3905  29.4958  1.2516  

 MSCA 26.2294  1.8668  27.7630  1.3199  28.9854  1.4363  

 HHO 26.5466  1.3061  27.7096  1.9734  29.3832  1.4732  

 IGWO 25.5883  1.5621  27.1439  1.5857  28.5538  1.6615  

BC10 PLO 28.5586  0.9106  29.9186  0.8825  31.3629  1.1799  

 WOA 28.8058  1.4184  30.6366  1.2192  31.8088  1.8961  

 SMA 28.6158  1.5597  30.3778  1.2094  31.5133  1.4372  

 JAYA 27.4750  1.3773  29.2359  1.4797  30.3068  1.6023  

 MVO 27.4583  1.8844  28.0325  2.0134  29.8556  2.0144  

 MSCA 27.3034  1.6869  28.7055  1.6376  29.2599  1.4856  

 HHO 27.0232  2.2404  29.1915  1.9431  30.1783  1.7831  

 IGWO 26.9413  2.2002  27.8555  1.8392  29.4878  1.4949  

Table A.8 SSIM evaluation results at a high threshold 

  16 thresholds 20 thresholds 24 thresholds 

Image Method AVG STD AVG STD AVG STD 

BC01 PLO 0.9798  0.0044  0.9850  0.0038  0.9888  0.0025  

 WOA 0.9788  0.0071  0.9849  0.0046  0.9890  0.0023  

 SMA 0.9773  0.0075  0.9832  0.0066  0.9884  0.0035  

 JAYA 0.9753  0.0074  0.9802  0.0061  0.9858  0.0040  

 MVO 0.9739  0.0085  0.9774  0.0097  0.9800  0.0068  

 MSCA 0.9697  0.0156  0.9796  0.0068  0.9822  0.0070  

 HHO 0.9733  0.0104  0.9763  0.0134  0.9837  0.0056  

 IGWO 0.9696  0.0080  0.9751  0.0069  0.9786  0.0095  



BC02 PLO 0.9869  0.0031  0.9912  0.0017  0.9932  0.0014  

 WOA 0.9849  0.0057  0.9901  0.0027  0.9924  0.0022  

 SMA 0.9831  0.0072  0.9900  0.0029  0.9916  0.0025  

 JAYA 0.9843  0.0036  0.9877  0.0038  0.9906  0.0025  

 MVO 0.9801  0.0060  0.9861  0.0045  0.9889  0.0035  

 MSCA 0.9774  0.0082  0.9845  0.0065  0.9895  0.0027  

 HHO 0.9771  0.0105  0.9841  0.0050  0.9898  0.0035  

 IGWO 0.9744  0.0095  0.9810  0.0070  0.9855  0.0063  

BC03 PLO 0.9761  0.0066  0.9851  0.0030  0.9890  0.0021  

 WOA 0.9698  0.0088  0.9813  0.0054  0.9874  0.0033  

 SMA 0.9765  0.0046  0.9839  0.0048  0.9861  0.0084  

 JAYA 0.9741  0.0082  0.9788  0.0062  0.9843  0.0031  

 MVO 0.9723  0.0076  0.9797  0.0043  0.9800  0.0067  

 MSCA 0.9685  0.0103  0.9761  0.0073  0.9806  0.0097  

 HHO 0.9610  0.0153  0.9726  0.0116  0.9776  0.0090  

 IGWO 0.9688  0.0081  0.9699  0.0092  0.9788  0.0068  

BC04 PLO 0.9599  0.0088  0.9696  0.0064  0.9738  0.0057  

 WOA 0.9538  0.0114  0.9654  0.0075  0.9746  0.0047  

 SMA 0.9558  0.0082  0.9651  0.0082  0.9711  0.0046  

 JAYA 0.9517  0.0128  0.9621  0.0102  0.9671  0.0096  

 MVO 0.9434  0.0135  0.9576  0.0130  0.9617  0.0131  

 MSCA 0.9430  0.0178  0.9567  0.0086  0.9626  0.0127  

 HHO 0.9313  0.0274  0.9519  0.0124  0.9626  0.0134  

 IGWO 0.9405  0.0136  0.9453  0.0139  0.9545  0.0167  

BC05 PLO 0.9794  0.0048  0.9848  0.0053  0.9888  0.0024  

 WOA 0.9792  0.0049  0.9831  0.0050  0.9883  0.0032  

 SMA 0.9785  0.0037  0.9842  0.0045  0.9877  0.0036  

 JAYA 0.9762  0.0052  0.9811  0.0046  0.9860  0.0043  

 MVO 0.9732  0.0083  0.9799  0.0070  0.9836  0.0055  

 MSCA 0.9736  0.0056  0.9792  0.0053  0.9835  0.0043  

 HHO 0.9724  0.0108  0.9777  0.0063  0.9829  0.0062  

 IGWO 0.9659  0.0113  0.9758  0.0079  0.9822  0.0040  

BC06 PLO 0.9730  0.0062  0.9794  0.0089  0.9855  0.0035  

 WOA 0.9672  0.0087  0.9799  0.0048  0.9839  0.0049  

 SMA 0.9682  0.0078  0.9757  0.0074  0.9848  0.0047  

 JAYA 0.9677  0.0086  0.9741  0.0071  0.9788  0.0082  

 MVO 0.9632  0.0147  0.9744  0.0108  0.9771  0.0096  

 MSCA 0.9574  0.0132  0.9656  0.0204  0.9787  0.0082  

 HHO 0.9602  0.0155  0.9650  0.0188  0.9773  0.0114  

 IGWO 0.9575  0.0149  0.9649  0.0154  0.9758  0.0058  

BC07 PLO 0.9518  0.0110  0.9620  0.0071  0.9725  0.0079  

 WOA 0.9558  0.0108  0.9656  0.0065  0.9713  0.0064  

 SMA 0.9572  0.0066  0.9639  0.0071  0.9722  0.0056  

 JAYA 0.9437  0.0161  0.9517  0.0149  0.9680  0.0070  



 MVO 0.9415  0.0172  0.9532  0.0155  0.9589  0.0151  

 MSCA 0.9253  0.0265  0.9527  0.0137  0.9596  0.0101  

 HHO 0.9388  0.0251  0.9514  0.0174  0.9649  0.0098  

 IGWO 0.9244  0.0273  0.9430  0.0173  0.9584  0.0117  

BC08 PLO 0.9530  0.0095  0.9631  0.0072  0.9718  0.0045  

 WOA 0.9518  0.0098  0.9628  0.0117  0.9691  0.0082  

 SMA 0.9513  0.0104  0.9600  0.0122  0.9697  0.0068  

 JAYA 0.9436  0.0164  0.9551  0.0112  0.9635  0.0102  

 MVO 0.9412  0.0123  0.9523  0.0133  0.9592  0.0116  

 MSCA 0.9332  0.0234  0.9511  0.0164  0.9586  0.0121  

 HHO 0.9255  0.0298  0.9486  0.0237  0.9554  0.0183  

 IGWO 0.9293  0.0227  0.9386  0.0266  0.9502  0.0170  

BC09 PLO 0.9721  0.0063  0.9813  0.0024  0.9854  0.0020  

 WOA 0.9715  0.0050  0.9794  0.0036  0.9828  0.0043  

 SMA 0.9691  0.0070  0.9765  0.0048  0.9810  0.0049  

 JAYA 0.9657  0.0055  0.9747  0.0054  0.9796  0.0053  

 MVO 0.9638  0.0109  0.9702  0.0092  0.9763  0.0070  

 MSCA 0.9603  0.0156  0.9691  0.0079  0.9754  0.0074  

 HHO 0.9607  0.0091  0.9655  0.0133  0.9751  0.0076  

 IGWO 0.9505  0.0172  0.9617  0.0129  0.9713  0.0090  

BC10 PLO 0.9521  0.0119  0.9627  0.0078  0.9717  0.0096  

 WOA 0.9544  0.0154  0.9672  0.0107  0.9731  0.0119  

 SMA 0.9557  0.0176  0.9674  0.0089  0.9728  0.0108  

 JAYA 0.9392  0.0198  0.9541  0.0157  0.9611  0.0165  

 MVO 0.9349  0.0315  0.9393  0.0285  0.9553  0.0236  

 MSCA 0.9370  0.0271  0.9511  0.0179  0.9537  0.0164  

 HHO 0.9270  0.0389  0.9517  0.0220  0.9601  0.0173  

 IGWO 0.9254  0.0453  0.9381  0.0288  0.9554  0.0156  
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